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ABSTRACT  

This paper describes a SystemVerilog transaction-based testbench compliant to the Verification 
Methodology Manual (VMM).  It explains by example the VMM methodology in the creation of 
a comprehensive constrained-random verification environment using a transaction-based 
approach.  This includes generation of transactions and consumption of them via transactors.  
The paper also addresses through graphical explanations how VMM macros and classes are used 
in the makeup of a transaction-based verification testbench.  The DUT used for this purpose is a 
synchronous FIFO model with assertions. The testbench models and results are demonstrated.  
The complete verification model is available for download.    
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1.0 Why SystemVerilog for Verification  

SystemVerilog is a rich language that provides constructs needed to support advanced 
methodologies for verification of today’s complex designs. These methodologies include 
transaction-based verification (TBV), coverage-driven verification (CDV), constrained-random 
testing (CRT), and assertion-based verification (ABV).  Functional coverage can be further 
divided into temporal coverage (with SystemVerilog assertions (SVA)), and data coverage (with 
covergroup).  A good transaction-based verification with CRT relies on constrained 
randomization of transactions and the channeling of those transactions to transactors for 
execution (i.e., driving the device under test (DUT) signals for testing).  These methodologies 
can use the collection and access of functional coverage so as to dynamically modify the test 
scenarios.   An adaptation of these methodologies supported by reusable libraries is explained in 
the book Verification Methodology Manual (VMM) for SystemVerilog [1].  “VMM Standard 
Library object code is available today for VCS users. VMM Standard Library source code, 
which can be used with EDA tools compliant with IEEE P1800 SystemVerilog, is planned to be 
available for license at no additional charge by VCS users and SystemVerilog Catalyst members 
before the end of the year”, (September 21, 2005).[2]  

1.1 SystemVerilog Constructs Supporting Verification  

A summary of the SystemVerilog constructs supporting verification is shown in Table 1.1.   

Table 1.1  SystemVerilog Constructs for Verification 

SystemVerilog 
Construct 

Verification Application 

Interface and virtual 
interface  

Provides grouping of signals needed to be driven and viewed by the 
verification model.     

Class and virtual 
class 

Builds reusable extendable classes for the definition of constrained-
random variables and the collection of supporting tasks related to 
common objectives.   

Mailbox / Queue Provides channeling and synchronization of transactions and data.  Is 
also used by scoreboard for verification 

Clocking block Identifies clock signals, and captures the timing and synchronization 
requirements of the blocks being modeled.  

Program block Provides an entry point to the execution of testbenches. Creates a scope 
that encapsulates program-wide data.  Provides a syntactic context that 
specifies scheduling in the Reactive region.  Creates a clear separation of 
testbench and design thereby eliminating race conditions in older 
Verilog. 

covergroup Provides coverage of variables and expressions, as well as cross coverage 
between them. 

Assertions, cover 
( SystemVerilog 
Assertions)  

Captures temporal behavior of the design as assumptions, checks those 
behaviors, provides functional coverage and the reporting of information 
upon error.  Assertions can interact with the testbench. [3] 

API Supports Application Programming Interface (API) for assertions and 
coverage.  
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The SystemVerilog class construct deserves some explanation because classes are core to the 
VMM methodology.  A class is a collection of data (class properties) and a set of subroutines 
(methods) that operate on that data.    

Classes can be inherited to extend functionality. 
Classes can be virtual (requiring a subclass or derived class)  
Classes can be used to build libraries for common functions, e.g., VMM. 
Classes must be instantiated and constructed to be used.  
The randomize function can be used to randomize class variables (that are qualified via 
an attribute, rand). 
Classes can be typed, parameterized. 
Classes can be passed as objects to methods in other classes and to mailboxes and 
queues.  
Classes can use virtual interfaces, with the actual interface passed to the constructors.  
This allows the reuse of classes with multiple interfaces.     

Randomization is very key to CRT for the creation of tests targeted toward a coverage-driven 
verification methodology where the testplan is more focused on the coverage rather than directed 
tests.  SystemVerilog supports the generation of constrained-random values with the use of the 
randomize function, the rand and randc type-modifier, randcase and randsequence statements, 
and the rich sets of constraints with the constraint construct.   

Coverage is a very important ingredient in the verification process because it provides feedback 
as to the progress of the verification effort.  SystemVerilog offers two types of coverage: 
temporal coverage with SVA’s cover, and data coverage with covergroup.  It also allows them to 
be used together - for instance a PCI abort condition can be detected via a SVA property and the 
slaves being addressed during such abort can be monitored (and the address space can be 
effectively binned/grouped) using covergroup. The results of the coverage information can be 
used to create a reactive testbench based on the coverage information extracted dynamically 
during simulation.    

Assertions play a key role in the verification process as they provide a concise way to capture 
design behavior spread across multiple and possibly varying number of clock cycles.  In 
addition, assertions can be tightly coupled to the verification environment through the action 
blocks or calls to tasks from within an assertion thread.  They also can be used as SystemVerilog 
events.  This interaction capability with the testbench can provide the following:  

a. Write to a variable, thus having the capacity to modify the flow of the testbench.   
b. Update user’s implementation of coverage. For example, bits of an initialized static 
vector can be modified when an assertion (i.e., assert or cover) reaches a certain state 
(e.g., passes or is covered).  When that vector is all ONEs, then the desired coverage is 
reached.  In addition, SystemVerilog API can also extract coverage info.  
c. Upon a failure, one could write to a file information about the failure, along with a text 
message. That can include all the relevant variables of the design, the local variables of 
the assertion thread, simulation time, severity level, etc. 
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d. SystemVerilog sequence can create an event when the sequence is finished, and that is 
very useful to synchronize various testbench elements.  

2.0 Why VMM? 

SystemVerilog is a vast language with 550+ pages LRM (on top of IEEE Std 1364-2001 Verilog 
HDL).  One is very likely to get trapped into its landscape and thereby using it in a sub-optimal 
way to achieve the end goal - i.e., finding all bugs.  A good methodology is the best way to use 
the language to its optimum.  Figure 2.0a shows the impact of such a methodology in capturing 
the power of SystemVerilog. VMM represents a methodology supported by a standard library 
that consists of a set of base and utility classes to implement a VMM-compliant verification 
environment and verification components.  VMM provides several benefits in the construction of 
testbenches.  These include unification in the style and construction of the testbench and in the 
reporting of information; the quick build of a layered and reusable testbench; and the access to 
high-level tests using constrained random stimulus and functional coverage to indicate which 
areas of the design have been checked.  

Figure 2.0a Impact of VMM Methodology in Capturing the Power of SystemVerilog 

The VMM consists of several base classes as shown in Figure 2.0b, and described in the VMM 
for SystemVerilog book.  This paper will demonstrate via an example the application of some of 
these services.  However, the modeling used for this paper did not use all of the features of 
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VMM, and we are restricting our discussions to the VMM features that we felt were most useful 
for this simple example.     

The major differences between a VMM compliant testbench and a conventional transaction-
based testbench include the following aspects:  

1. The formalization of the sequencing of steps taken during the verification cycle (See 
VMM appendix A, vmm_env). 

2. The methodology used to generate and consume transactions, including the automation 
with the use of VMM macros.  

3. The methodology and support used to adapt transactions to modifications through 
callbacks.  

4. The level of support using the various base-class methods.  
5. The methodology used to report logging and status information.     

Figure 2.0b VMM Basic Base Classes     

3.0 Transaction-Based Verification of a FIFO   

This section presents a testbench of a FIFO using the VMM methodology.  Fundamentally, 
VMM recommends a layered approach to building verification environments. While layered 
testbench concepts have been around for several years now, there has not been any common 
definition.  The different interpretations of layered testbench caused the design of different 
verification environments even within the same organization.  Experience has shown that such 
heterogeneous verification environments lead to too much redundancy.  For example, a 
verification IP developed by one group doesn’t fit easily well into another slightly different 
project/environment.  A significant amount of effort can be easily saved when various teams 
follow a unified methodology in the architecture of testbenches.  For this to become reality, a 
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reference verification architecture that is flexible to cater various domains needs to be developed.  
VMM is the industry’s first non-proprietary, open, standard language-based verification 
methodology.   

3.1 The DUT 

The design under test (DUT) is a synchronous first-in first-out (FIFO) model with the following 
port connections:  
  module fifo  
    (input clk, input reset_n, fifo_if.fslave_if_mp f_if);  

Those port connections include the clock, the reset, and the FIFO interface using with the slave 
modport.  Figure 3.1a. demonstrates the FIFO interface with the modports used throughout the 
design and the testbench.   

Figure 3.1a FIFO Interface  (file fifo_if.sv)  

The paper addresses the PUSH and POP interface with one transactor (file fifo_cmd_xactor.sv) 
to drive all the signals, and a monitor transactor (file fifo_mon_xactor.sv) to monitor the signals.  
The complete model is shown in the appendix and is available for download.[4]  

A DUT typically carries with it a set of requirement documents and a set of interfaces.  
SystemVerilog provides a useful construct, the interface to abstract the communication across 
several modules.   Some designers use the SystemVerilog interface definition in the RTL design.  
Others restrict the design to the Verilog style with individual port signals, instead of grouping 
the signals with SystemVerilog interfaces.  If an interface is not defined, it is necessary for the 
verification engineer to define such an interface model as this facilitates the connections to the 
verification environment defined in classes through the use of virtual interfaces.   

An interface typically has tasks and assertions associated with the operation of the signals of the 
interface.  Examples of tasks in a FIFO interface include a push_task, a pop_task.  VMM (rule  
4-9) recommends the definition of those tasks associated with the interface in classes and 
subclasses (a.k.a. derived classes), separate from those defined in the interface.  Interface 

interface fifo_if(input wire clk, 
input wire reset_n);

timeunit 1ns;
timeprecision 100ps;

//   import fifo_pkg::*;
logic  push;  
logic  pop;   
wire  full;   
wire  empty;  
logic  error;     
word_t data_in;
word_t data_out;
parameter hold_time=3;  
parameter setup_time = 5;

clocking driver_cb @ (posedge clk);
default input #setup_time

output #hold_time;
input  empty, full, data_out, error;
output data_in, push, pop;

endclocking : driver_cb

modport fdrvr_if_mp (clocking driver_cb);

Identifies sampling 
and delays
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assertions relate to the properties or timing relationships of those signals.  Assertions can be 
defined in the interfaces or in a property module bound to the DUT  instance.  The specifications 
are used to build the interfaces and property module, as shown in Figure 3.1b.      

Figure 3.1b.  Specifications Used for Definition of Interfaces and Verification Modules 

3.2  The Testbench  

3.2.1 Conceptual View 

The basic idea of a transaction-based verification methodology, such as VMM, is to separate the 
transaction from the transactor.  While there are few varying definitions of these terms, here is a 
simple definition we follow in this paper.  A transaction is basically “what needs to be tested” 
and a transactor models “how to test”.  Examples of a transaction are: 

1. Instruction.  This represents the high-level tasks to be executed, such as a READ, 
WRITE, NO-OP, LOAD, etc. 

2. Data.  This represents information such as address, data, number of cycles, etc.  
3. Parameters.  This can represent a mode, a size, etc.  
   

In VMM, a transactor is a generic name, and there are several kinds of transactors such as 
generator, driver, monitor, scoreboard etc.  A direct equivalent of a typical VMM transactor is 
what’s conventionally known as BFM (Bus Functional Model) at the lower level.  On the driver 
side, a BFM takes a transaction as input and sends it to the DUT according to the underlying 
protocol.  

It is best to use SystemVerilog classes to declare transactions and transactors.  The rationale 
behind this guideline is as follows: by definition a transaction has a limited lifetime - from the 
time it gets generated to the time it is consumed by the DUT, checked for correctness etc.  The 
number of such transactions in a system is variable - this would logically mean that a dynamic 
memory allocation of such transactions is a must have to make optimal use of simulation.  By 
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definition, constructs such as plain Verilog modules and SystemVerilog interfaces  etc. are 
“static” in nature - they exist throughout the simulation and hence are not suited for modeling 
dynamic transactions.  Another key reason to consider using SystemVerilog classes to model 
transactions is the ability to easily derive and extend them to create variations of transactions 
and to mimic real-life data streams such as Ethernet Packets.  An Ethernet packet, as defined by 
the standard, has several layers (such as L2, L3, L4 etc.), and each layer encapsulates another 
one.  With a conventional “Hardware Design Language” one is limited to use only a simple 
modeling style that does not lend to good, maintainable and reusable code.  The Software 
domain has been handling such complexity in the past with great success with Object-Oriented 
(OO) programming style.  SystemVerilog brings in that OO style to Hardware Verification via 
the class data type.  

VMM defines a base class named vmm_data to model transactions.  It is used as the basis for all 
transaction descriptors and data models.  A simple example of a FIFO transaction modeled using 
vmm_data is shown in Figure 3.2.1a.  

class fifo_xactn extends vmm_data; 
  rand fifo_scen_t            kind;   // see package for type 
  rand logic [BIT_DEPTH-1:0]  data;   
  rand int                    idle_cycles;   
       time                   xactn_time; 
endclass : fifo_xactn 

Figure 3.2.1a.  Transaction Class Example (file fifo_xactn.sv) 

The vmm_data base class defines several virtual functions and tasks.  A complete list is beyond 
the scope of this paper.  One such function is the vmm_data::copy() that should (VMM Rule 
4-76) be extended to add relevant transaction fields.  In our FIFO example, this function is 
shown in Figure 3.2.1b.   

function  fifo_xactn fifo_xactn::copy(vmm_data cpy); 
  fifo_xactn local_xactn; 
  if (cpy == null) begin 
   local_xactn  = new; 
  end 
  else if (!$cast(local_xactn, cpy)) begin 

 

`vmm_fatal(log, "Attempting to copy a non fifo_xactn instance"); 
    copy = null; 
    return; 
  end 

 

  local_xactn.kind = this.kind; 
  local_xactn.data = this.data; 
  local_xactn.idle_cycles = this.idle_cycles; 
  copy = local_xactn; 
endfunction : copy 

Figure 3.2.1b.  Sample User-defined Copy Method (file fifo_xactn.sv) 
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Other useful vmm_data functions include the compare() for comparison of transactions useful 
with scoreboards to check for data integrity,  and psdisplay() for the return of an image of the 
transaction.  The macro `vmm_channel (discussed later on) defines a channel class derived from 
the vmm_data to transport instances of a specified class (e.g., a transaction).   

Transactors are the workhorses of a transaction-based verification (TBV) environment; they 
perform the actual job of transferring the data (transaction) to other units to perform a task, such 
as driving the DUT pins or driving the verification scoreboard.   

This concept is represented in Figure 3.2.1c where in constrained-random testing, the 
transactions defined in a transaction class are randomized with a generator and sent to a 
transactor via a channel for the execution of those transactions.  For example, a transaction such 
as a PUSH / IDLE / POP  is randomized with constraints, and then sent to a channel (constructed 
with a queue and characterized in the diagrams as a mailbox) via the  put method.  The put 
method blocks if there is no room in the channel to insert another transaction.  When the 
transactor is ready to process another transaction, it extracts from the channel the next 
transaction via the get method.  The transactor then proceeds on executing the begotten 
transaction.   

Figure 3.2.1c High-level View of the Testbench 

Note that the use of a channel provides several advantages, including the buffering and 
separation between the generation and the consumption of the transactions.  A second advantage 
is the simplicity in clock synchronization between the generation and consumption side of the 
transactions.  Specifically, they do not need to be synchronous to a common clock because the 
insertion and extraction of transactions is separate.  A third advantage is the capability to easily 
modify the transactions through callbacks to provide changes such as error injection.  A fourth 
advantage is capability to have generation (and even consumption) of the transactions be 
performed by different agents/transactors.     

Testbench 

DUTDUT

Clock 
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DUT 
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Program
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3.2.2 Testbench Outline  

Figure 3.2.2 represents a structural view of the testbench. The testbench includes the following 
objects:  

1. Variables declarations:  These are variables local to the testbench  
2. Interface instantiations:  These are the DUT interfaces to provide the connection 

between the stimulus drivers/monitors and the DUT.   
3. Program instantiations: The program provides the control for testing the DUT.  A 

testbench may contain more than one program. 
4. DUT instantiations:  These are the devices under test.  
5. Binding of property modules to DUT instances: Property module typically includes 

assertions and coverage requirements. 
6. Clock generators: These generators emulate the clocks in the system.    

    Figure 3.2.2 Testbench Structure 

3.2.3 The program  

SystemVerilog program provides an ideal encapsulation for all testbench related items.  It acts as 
entry and exit points for the simulation.  SystemVerilog LRM has well defined semantics for 
program that requires it to execute under reactive time-step, thereby eliminating any design-to-
testbench race conditions (one of the most recurring problems with plain Verilog testbenches and  
many teams have spent unproductive debug cycles in detecting and resolving them in the past). 
The program is responsible for the generation and verification of the test vectors.  Figure 3.2.3a 
represents the program for the verification of the FIFO model.   The program makes use of the 
VMM library, a user-defined set of constants and type definitions, a transaction class, and an 
environment class.   A program can have the following constructs: initial, continuous 
assignment, final construct, module or generate item declaration, concurrent assertion item, 

bind RTL
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DUT
RTL

Clock 
generator

Variables and 
Interfaces*

Test 
Program

CLASSES
* support 
* transaction 
* transactor
* libraries

Property 
module

TESTBENCH



12 
SNUG San Jose 2006  VMMing a SystemVerilog Testbench by Example 

timeunits declaration.  It cannot

 
contain always blocks, UDPs, modules, interfaces, or other 

programs.   VMM Rule 4-7 is a worthy rule related to the program block that states: 
“synchronous interface signals shall be sampled and driven using a clocking block.   This 
approach will avoid race conditions between the design and the verification environment, and it 
will allow the verification environment to work with RTL and gate-level models of the DUT 
without any modifications or timing violations.”  See files fifo_if.sv, fifo_cmd_xactor.sv for an 
application of the clocking blocks, and section 3.3 for the resulting display of hold times 
specified in the clocking blocks.   

Per VMM guidelines, the initial block constructs an environment object and starts the run 
method from the environment class.  The vmm_env::run() execution sequence is described in the 
VMM book and is shown in Figure 3.2.3b.  That run method essentially builds and starts the 
verification environment, including the fifo_xactn, the generator of transactions into the 
transaction channel with the fifo_xactn_push_atomic_gen, the transactor to drive the FIFO 
interface, and the monitor to extract the observed transactions on the FIFO interface.   

program fifo_test_pgm (fifo_if fifo_if_0  
                       ); 
  timeunit 1ns; timeprecision 100ps; 
`include "vmm.sv" 
`include "fifo_pkg.sv"   
`include "fifo_xactn.sv" 
`include "fifo_env.sv" 
  vmm_log log; 
  fifo_env fifo_env_0; 
  fifo_xactn my_push_xaction; 

 

initial 
  begin 
    // Build all components of an environment - testbench 
    log = new("Pgm_Logger",0); 
    fifo_env_0 = new(fifo_if_0);  
    `vmm_note(log,"Started"); 
    fork : f1 
      fifo_env_0.run(); 
    join_none 
    #100000; 
    end 
endprogram : fifo_test_pgm 

 Figure 3.2.3a.  High-Level Structural View of the Program (file  fifo_pgm.sv) 

The formal arguments of the program include the fifo interface (and may include other interfaces 
and signals).    

Build of environment and 
control of simulation.   

Actual connection to 
FIFO interface  
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Figure 3.2.3b vmm_env::run() Execution Sequence   
(from Verification Manual Methodology Manual for SystemVerilog)  

3.2.4 A generalized test flow mechanism 

In general, every test that is being run in a simulation follows a test-flow such as initialize – start 
-wait_for_end - finish.  In many environments this is not defined a priori leading to various 
difficulties such as ease of integration, wasted debug cycles (e.g., after hours of debug, problem 
might be root caused to premature start of packet transmission - before configuring the DUT 
registers).  VMM defines a well thought out flow to avoid such problems, in addition to being 
very flexible to suit different environments.  It also has built-in checks to make sure the steps are 
not by-passed accidentally.  

The run() method consists of the calls to other methods, which are summarized below.  Many of 
the specific extensions for these methods are described in this paper.   
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gen_cfg() 

This method creates a random configuration of the test environment and DUT.  It may choose 
the number of input and output ports in the design and their speed, or the number of drivers on a 
bus and their type (master or slave).  One can also randomly select the number of transactions, 
percent errors, and other parameters.  The goal is that over many random runs, one will test 
every possible configuration, instead of the limited number chosen by directed test writers.  

build() 

This method builds the testbench configuration generated in the previous method.  This includes 
generators and checkers, drivers and monitors, and anything else not in the DUT.  An example of 
the user-defined build method is shown in section 3.2.6.    

cfg_dut () 

In this method one downloads the configuration information into the DUT.  This might be done 
by loading registers using bus transactions, or backdoor loading them using $readmemh/b or a 
hierarchical reference to configuration registers (e.g., top.chip.pci_blk.cfg_0 = 10), or C code.  

start() 

This method starts the test components. This is usually done by starting the transactor objects.  
For example, the start() task in class fifo_env  (which extends vmm_env) call the  start_xactor(), 
which in turn call the main() tasks in the transactors.  This is a key step in the whole flow - this is 
where all components of the testbench are starting their intended operations. For all transactors 
that are built in the environment, their individual start_xactor() task should be called in this step. 
.   
  task start(); //  in fifo_env.sv file  
    super.start(); 
    this.push_gen_0.start_xactor(); 
    this.fifo_cmd_xactor_0.start_xactor(); 
    this.mon_0.start_xactor(); 
  endtask : start  

wait_for_end() 

This method waits for the end of the test, usually done by waiting for a certain number of 
transactions or a maximum time limit.  Depending on the design under test and the nature of test, 
this might become complicated - for instance, one may need to monitor internal state machines 
to see when they return to their idle states.  

stop() 

This method stops the data generators and waits for the transactions in the DUT to drain out.  

cleanup() 

This method checks recorded statistics and sweeps for lost data. 
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report() 

This method prints the final report.  Note that vmm_log will automatically print its report at the 
end of simulation.  

The following sections describe the transaction classes, the creation of channels, the generation 
of transactions into the channels, the consumption of transactions from the channels, the build of 
the environment, and the start of execution.  Simulation results are then presented.  
   
3.2.5 Transaction class 

In a TBV methodology, a transaction defines the basic data model of the system, establishes a 
common currency for the system. The individual properties/members of a transaction may need 
to be randomized to support a CRT on top of TBV.  The transaction class is defined as a derived 
class of vmm_data to take advantage of methods available from this base class.  Also consistent 
use of vmm_data to derive transactions will ensure same look and feel and shall help in 
maintenance of the code over a period of time. Figure 3.2.4 represents the transaction class for 
the FIFO.   
.    

class fifo_xactn extends vmm_data; 

 

  rand fifo_scen_t            kind; 
  rand logic [BIT_DEPTH-1:0]  data;   
  rand int                    idle_cycles; 
       time                   xactn_time; 
   
  constraint cst_data { 
      data  < 1024; 
  } 

 

constraint cst_idle { 
   idle_cycles inside {[1:3]};  
  }   

  

constraint cst_xact_kind { 
    kind dist { 
      PUSH := 400, 
      POP := 300, 
      PUSH_POP :=200, 

 

     IDLE := 300,  
      RESET := 1 
    }; 
  }   

 

 static vmm_log log = new("fifo_push", ""); 

 

function new(); 
    super.new(this.log); 

Base class  

Make static to minimize  
memory usage (VMM pg. 383)
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    `vmm_note(this.log, "Message from constructor"); 

 
endfunction : new 

  
virtual function string psdisplay(string prefix = ""); 

      $sformat(psdisplay, 
               "%s Fifo push Xaction %s \n", 
               prefix, this.kind.name()); 

 

endfunction : psdisplay 

 

extern virtual function  fifo_xactn_push  
                                 copy(vmm_data cpy = null); 
     
endclass:fifo_xactn_push 

Figure 3.2.4.  Transaction Base Class (file fifo_xactn.sv) 

Some of the important methods inside vmm_data are copy(), psdisplay(), etc.  Every vmm_data 
derivative should implement the actual definitions for these functions.  Function psdisplay() 
defines a consistent way to display every transaction object in the system.  It returns a string, and 
hence can be easily used in any $display call etc. The copy() method provides a very important 
functionality of implementing what constitutes a true copy of the transaction.    

3.2.6 Transactor class 

Transactors represent the workhorses of the system.  All the BFMs, generators, scoreboards, 
monitors etc. are built as transactors.  VMM defines a base class named vmm_xactor for a 
generic transactor.  All transactors in a system should be derived from this vmm_xactor.  A 
vmm_xactor has several hooks for allowing basic functionalities as well as advanced features 
such as flow control.  A detailed look into how a transactor operates is provided later in the 
paper.  

3.2.7 Creation of Channels  

A channel provides the structures (e.g., queues)  to store the transactions, and provides the 
support to process those transactions.  One side of the channel is the generator putting 
transactions into the channel.  The functional transactor (e.g., the BFM) gets the transactions 
out of the channel, and executes them.  The VMM channel is constructed with a queue that has 
both high-water and low-water marks to fine-tune the interactions between the producer and 
consumer.  Channels allow flow control, so the put() method will block if the channel is full.  
The get() method removes the transaction from the end of the channel, while peek() provides a 
handle to it without removal.  Both the get() and the peek() block if the channel is empty.  Note 
that a channel acts like a mailbox, and is symbolically represented as a mailbox in the diagrams.     

To facilitate the implementation of channels VMM automatically creates a derived class from 
the user-defined transaction class using the `vmm_channel macro as shown in the example below 
(see file fifo_xactn.sv):  
`vmm_channel (fifo_xactn_push)   
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That macro creates the class fifo_xactn_push_channel that produces a strongly typed queue to 
help prevent coding errors.   Figure 3.2.5 represents a graphical view for the creation of the 
channel class and the creation of the transaction generator (discussed in the next subsection).  

Figure 3.2.5 Creation of Channels and  Generators from Transactions   
(See files fifo_xactn.sv , fifo_env.sv)  

3.2.8 Generation of Transactions  

In a CRT methodology, the default transactions are randomly generated.  This generation can be 
accomplished as follows: 

Instantiate a “blueprint” of the object to be generated (e.g., a new transaction). 
Construct it, randomize it. 
Push it to the output channel so that they can be extracted by the down-stream 
transactors.   Note that the pushing can be blocked when the channel is to capacity.  
Loop process.   

To support this feature in an automatic manner, VMM provides a macro `vmm_atomic_gen and 
`vmm_scenario_gen  for the creation of generator classes for atomic (purely random  with no 
sequence) and sequence generation of transactions.  In this model we used a simple automatic 
generator with the pre-defined macro for simplicity:  
`vmm_atomic_gen (fifo_xactn, "FIFO PUSH Xaction Generator")  

This macro creates the class fifo_xactn_atomic_gen. When this class is instantiated, connected to 
the channel, and started, then the transactions are automatically generated, randomized and put 
into the channel for extraction by the consumer.  The user does not have to create or call a 
method to explicitly do this randomization / generation function.     

The application of this generated class is demonstrated in the build method of fifo_env, as shown 
in Figure 3.2.6a.   

fifo_xactn

rand, Constraints 

`vmm_channel
(fifo_xactn)

vmm_data

fifo_xactn_
channel

creation

creation

`vmm_atomic_gen (fifo_xactn, 
"FIFO PUSH Xaction Generator")

fifo_xactn_
atomic_gen

class
class

class
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// In file fifo_env.sv 
// Channel instance 
fifo_xactn_channel       fifo_push_channel;   
// Generator instance 
fifo_xactn_atomic_gen    push_gen_0;      

 
function void build(); 
    this.fifo_push_channel =  // instantiate channel 
                    new("push_chan","0"); 
    this.push_gen_0 =          // instantiate generator   
         new ("Push Xaction generator", 0);  

 

    this.push_gen_0.out_chan =  // Connect channel to generator 
                  this.fifo_push_channel; 
... 
endfunction : build  

Figure 3.2.6a Generation of Transactions into Channels (file fifo_env.sv)  

Figure 3.2.6b represents a graphical view of this generation of transactions into channels.    

 Figure 3.2.6b Generation of Transactions into Channels  

3.2.9 Consumption of transactions from the channels 

The transactor class is responsible for extracting (or getting) the transaction from the channel, 
and parsing the transaction into the vector sequences used by the DUT.  The transactor needs to 
communicate the assertion of vectors onto signals.  To facilitate reuse, those signals are defined 
into virtual interfaces.  In this example, the  FIFO driver interface is of type fifo_if. fdrvr_if_mp, 
Figure 3.2.7a represents the consumption of transactions from the channel.    

vmm_env

fifo_push_channel

push_gen_0;

function void build();
this.fifo_push_channel =  

new("push_chan","0");

this.push_gen_0 = 
new ("Push Xaction generator", 0);

this.push_gen_0.out_chan =
this.fifo_push_channel;

fifo_xactn_
channel

fifo_xactn_
atomic_gen

class

class
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The build() method in the user-defined environment (file fifo_env.sv) creates the simulation 
environment.  Figure 3.2.7b demonstrates the generation and consumption of transactions 
through the use of channels for transaction transfers, the use of the atomic generator for the 
production of the transactions into the channels, and through instantiation of the transactor for 
the consumption of the transactions.    

The main task in the transactor gets the transaction from the channel, analyzes its contents, and 
drives signals onto the virtual interface.  This is demonstrated in Figure 3.2.7c.   The main task 
of the fifo_xactor derived class (extended from vmm_xactor) is automatically started by the base 
class vmm_xactor.   

 Figure 3.2.7a.  Consumption of Transactions from the channel (see file fifo_cmd_xactor.sv) 

class fifo_cmd_xactor extends vmm_xactor;
virtual fifo_if.fdrvr_if_mp f_if;
fifo_xactn_channel in_chan;

function new(string instance,
int unsigned         stream_id = -1,
virtual fifo_if.fdrvr_if_mp new_vir_if,
fifo_xactn_channel new_in_chan);

super.new("Fifo COMMAND Layer Push Xactor", instance, stream_id);
this.f_if = new_vir_if;
this.in_chan = new_in_chan;

endfunction : new     

task main();
…
forever
begin : main_loop

fifo_xactn_push push_xaction;
this.in_chan.get(push_xaction);
case (push_xaction.kind)
PUSH :  this.push_task(push_xaction.data); 

fifo_xactn_
channel

class

Started by fifo_env::start()  
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 Figure 3.2.7b.  Generation and Consumption of Transactions    

class fifo_cmd_xactor extends vmm_xactor; 
. . 

 

 task main(); 
    fork 
      super.main(); 
    join_none 
    forever 
    begin : main_loop 
      fifo_xactn  push_xaction; 
      this.in_chan.get(push_xaction); 
      case (push_xaction.kind) 
        PUSH : this.push_task(push_xaction.data); 
        POP  : this.pop_task();  
        PUSH_POP : this.push_pop_task(push_xaction.data); 
        IDLE : this.idle_task(push_xaction.idle_cycles); 
        RESET : this.reset_task(5);  
       endcase 

 

    end : main_loop    
  endtask : main 

 

Extracting the 
transaction from 
the channel

 

VMM rule 4-93 – All threads shall be started in the 
extension of the vmm_xactor::main() task. 
main() is started by fifo_env::start_xactor()   

 
vmm_env

fifo_push_channel

push_gen_0;

function void build();
this.fifo_push_channel =  

new("push_chan","0");

this.push_gen_0 = 
new ("Push Xaction generator", 0);

this.fifo_cmd_xactor_0 = 
new("PUSH_XACTOR",

0,
vir_if,
fifo_push_channel
);

this.push_gen_0.out_chan = 
this.fifo_push_channel;

fifo_xactn_
channel

fifo_xactn_
atomic_gen

fifo_cmd_xactor_0;

fifo_cmd_xactor

class

class

class
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  task push_task (logic [BIT_DEPTH-1:0] data); 
     begin 
       $display ("%0t %m Push data %0h ", $time, data); 

 
   f_if.driver_cb.data_in <= data;  // using clocking block 

 
   f_if.driver_cb.push <= 1'b1; 

 
   f_if.driver_cb.pop  <= 1'b0; 

 

   @ ( f_if.driver_cb); 
       f_if.driver_cb.push <= 1'b0; 
      end 
  endtask : push_task 
 .. 

Figure 3.2.7c.  Execution of Transaction by Transactor (file fifo_cmd_xactor.sv) 

3.2.10 Monitoring of Transactions   

“A monitor is passive transactor that autonomously reports observed

 

data or transactions.   It 
may include a checker or equivalent checking functionality for the observed protocol, but not the 
data or transactions transported by the protocol”.  Thus, the monitor examines the interface, 
creates a transaction based on what is observed on the interface, and puts that observed 
transaction onto a monitor channel.  That process is demonstrated graphically in Figure 3.2.8a.  

Figure 3.2.8a Putting Transactions into Monitor Channel  (file fifo_mon_xactor.sv)  

mon_push_channel

fifo_xactn_
channel

class

fifo_xactn cur_push_xactn;
..
task fifo_mon_xactor::mon_push();

while (1) begin : mon_push_loop
@(this.f_if.mon_cb);
if (this.f_if.mon_cb.push === 1'b1) begin

this.cur_push_xactn = new();
this.cur_push_xactn.data = this.f_if.mon_cb.data_in;
this.cur_push_xactn.xactn_time = $time;
… 
this.push_out_chan.put(this.cur_push_xactn);

end // if
end : mon_push_loop

endtask : mon_push

f_if

fifo_mon_xactor

class
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3.2.11 Class Relationships in UML 

To express the class relationships of the testbench design model, a UML diagram was created 
using StartUML™ [5].   These are shown in Figure 3.2.11a and  Figure 3.2.11b.   The diagram 
demonstrates the class relationships between the classes, and the class objects, operators.  Design 
patterns are addressed in the book Design Patterns [6] and is a recommended reading.                        

Figure 3.2.11a Class Relationships of the Testbench Design Model                

Figure 3.2.11b Class Relationships of the Testbench Design Model 

vmm_data

fifo_xactn

+ rand  fifo_scen_t kind;
+ rand logic [BIT_DEPTH-1:0]  data;
+ rand int idle_cycles;

+new()
+ psdisplay(string prefix = "")()

vmm_xactor

fifo_cmd_xactor

+ virtual f ifo_if f_if;
+ vmm_log log;
+ fifo_xactn_channel in_chan;

+ new( virtual f ifo_if  new_vir_if, f ifo_xactn_channel      new_in_chan);()
+main()

` vmm_atomic_gen(fifo_xactn, ".. Xaction Genr")
<<macro>>

fifo_xactn_atomic_gen

+ fifo_xactn
+ fifo_xactn_channel

` vmm_channel (f ifo_xactn)
<<macro>> fifo_xactn_channel

f ifo

fifo_if

fifo_env

+ fifo_cmd_xactor f ifo_cmd_xactor_0;
+ fifo_xactn_channel f ifo_push_channel;
+ fifo_xactn_channel mon_push_chan;
+ virtual f ifo_if vir_if;
+ push_cfg push_cfg_0;
+ f ifo_xactn_atomic_gen push_gen_0;
+ f ifo_mon_xactor mon_0;
+ fifo_log_fmt log_fmt_cntl;
+ vmm_log log;

+ new(virtual f ifo_if new_vif)
+build()
+ reset_dut()
+ start()
+ wait_for_end()

vmm_env
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3.2.12 Message Service 

The message service uses the vmm_log class.  This class and its supporting functions and macros 
help to ensure a consistent look and feel to the messages issued from different sources.  This 
section demonstrates an example in the use of the vmm_log class and macros.   

The class fifo_xactn_push  demonstrates the use of vmm_log and the definition of the Synopsys 
VCS function psdisplay.  Figure 3.2.12a provides a snippet of the code.    

  static vmm_log log = new("fifo_push", ""); 
  function new(); 
    super.new(this.log); 
    `vmm_note(this.log, "Message from constructor"); 
  endfunction : new 

 

  virtual function string psdisplay(string prefix = ""); 
      $sformat(psdisplay, "%s Fifo push Xaction %s \n", 
               prefix, this.kind.name()); 
    endfunction : psdisplay 

Figure 3.2.12a.  Application of vmm_log (file  fifo_xaction.sv) 

The class fifo_cmd_xactor demonstrates the application of `vmm_note macro and the $psprintf.  
Figure 3.2.12b provides a snippet of that code.   

vmm_log log; 
 function new(string               instance, 
             int unsigned         stream_id = -1, 
             virtual fifo_if.fdrvr_if_mp new_vir_if, 
             fifo_xactn_push     new_in_chan); 
      super.new("Fifo COMMAND Layer Push Xactor",  
                 instance, stream_id); 
      this.f_if = new_vir_if; 
      this.in_chan = new_in_chan; 
      this.log = new("Fifo COMMAND Layer Xactor","Logger0"); 
    `vmm_note(this.log, "Push CMD_Xactor new"); 
  endfunction : new  

  task main(); 
    .. 
    begin : main_loop 
      fifo_xactn  push_xaction; 
      `vmm_note(this.log,  
        "About to Get a new fifo xaction from in_channel "); 
      this.in_chan.get(push_xaction); 
    `vmm_note(this.log,  
     $psprintf("Got a new fifo xaction from in_channel %s ", 
       push_xaction.psdisplay())); 

Figure 3.2.12b. Application of `vmm_note and the $psprintf  (file fifo_cmd_xactor.sv) 
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During simulation, Figure 3.2.12c  demonstrates a sample text of what was displayed for these 
functions and macros.   

0.00 ns Pgm_Logger [Normal:NOTE] | Started 
0.00 ns Fifo COMMAND Layer Xactor [Normal:NOTE] | Push CMD_Xactor new 
0.00 ns fifo_push [Normal:NOTE] | Message from consutructor 
0.00 ns FIFO Env Logger [Normal:NOTE] | Sim shall run for no_of_xactions 238 
..  

1950.00 ns fifo_push [Normal:NOTE] | Message from constructor 

1950.00 ns Fifo COMMAND Layer Xactor [Normal:NOTE] | About to Get a new fifo 
xaction from in_channel  

1950.00 ns Fifo COMMAND Layer Xactor [Normal:NOTE] | Got a new fifo xaction 
from in_channel  Fifo push Xaction PUSH_POP  

1950.00 ns fifo_tb.utest_pgm.\fifo_cmd_xactor::push_pop_task  Push data e 

 Figure 3.2.12c Sample Display of Simulation Messages  

3.3 Simulation Results  

All simulations were performed with Synopsys VCS Version X-2005.SP1.  Figure 3.3a shows 
the assertion failure summary for the property module bound to the DUT.  Figure 3.3b  shows a  
Push Error (Push on FULL), while Figure 3.3c demonstrates a Pop Error (POP on EMPTY   

 

Figure 3.3a Assertion Failure Summary 
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Figure 3.3b  Simulation with Push Error (Push on FULL) 
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Figure 3.3c  Simulation with Pop Error (POP on EMPTY) 
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3.4 File Structure and Compilation  

Table 3.4.  demonstrates the file Structure and the purpose of each file.   Figure 3.4a is a 
graphical representation of the relationship between the files.    

The compilation and simulation of the model with Synopsys VCS simulator can make use of the 
Makefile in the vcs subdirectory, as shown in Figure 3.4b.   The file list is shown in Figure 3.4c.   

all: 

 

vcs -debug_all -sverilog -f flist +incdir+../ -ntb_opts rvm  
run: 

 

./simv -gui & 
clean: 
./rm -fr csrc* simv* scsim* *vpd ag* session* work/* WORK/*  
      *.so *.log test* cm* ucli* worklib/* 

Figure 3.4b.  Makefile for Compilation with Synopsys VCS Simulator (file vcs/Makefile)  

../fifo_pkg.sv 

../fifo_props.sv 

../fifo_if.sv 

../fifo_rtl.sv 

../fifo_pgm.sv 

../top_tb.sv 

Figure 3.4c.  File list used for Compilation (file vsc/flist) 

Note that the compilation list does not include all the files used by the testbench.  This is because 
the program file (fifo_pgm.sv) had include statements:  

`include the "vmm.sv" 
`include "fifo_pkg.sv"   
`include "fifo_xactn.sv" 
`include "fifo_env.sv"   

In addition, the fifo_env.sv file has include statements:  
`include "fifo_log_fmt.sv" 
`include "fifo_cmd_xactor.sv" 
`include "fifo_gen_xactor.sv"   
`include "fifo_mon_xactor.sv"   
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Table 3.4.  File Structure and Functions 

File Function Used by 
fifo_pkg.sv Defines types and parameters. .   ALL 
fifo_if.sv Defines the FIFO interface.  RTL, property models, 

and by program, 
testbench, transaction 
and transactors 

fifo_xactn.sv Defines the transaction class with the 
constraints 
Also used for the channel generation with: 
  `vmm_channel (fifo_xactn) 

`vmm_channel macro 
for generation of 
channel, 
`vmm_atomic_gen 
macro for generation 
of atomic generator, 
monitor transactor for 
creation of transaction 
from observed values 
on bus interface.  

fifo_gen_xactor.sv Uses the macro `vmm_atomic_gen for 
generation of atomic generator, defines the 
constraints for the number of transactions.  

 Environment for 
creation of the build 
model, 

fifo_cmd_xactor.sv

 

Provides the transactor definition to drive the 
FIFO model.  

FIFO environment  

fifo_log_fmt.sv Defines formatting information for display.  FIFO environment 
fifo_mon_xactor.sv

 

Creates a copy of the observed transaction onto 
a transaction channel.  

Scoreboard, top level 

fifo_env.sv Creates the build and start for simulation  program 
fifo_pgm.sv Creates the modeling for simulation and 

initiates the run in the environment  
Top level 

fifo_props.sv Defines the properties for assertions Top level for bind 
fifo_rtl.sv Represents the FIFO RTL DUT.  Top level  
top_tb.sv Represents the top level and instantiates the 

RTL, the bind, the monitor, etc.  
none 
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                              Figure  3.4. File Structure and Relationships 

4.0  Conclusions and Recommendations 

Our experience with VMM and assertions was very positive because VMM represents a 
methodology that addresses the important phases of the verification  process in a structured 
manner, along with the potential for easy expansion and reuse.  The assertions along with the 
random transactions did detect an error in the RTL model for the FULL flag.  The VMM library 
and macros do help in the building of the model.  However, the application of VMM requires a 
good understanding of the use of the library elements and macros.  This knowledge can be 
acquired through training,  examples, and the use of the VMM for SystemVerilog book.   We 
hope that this paper provided a better understanding of the generation and consumption of 
transactions written a la VMM.   
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