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ABSTRACT

This paper describes a SystemVerilog transaction-based testbench compliant to the Verification
Methodology Manual (VMM). It explains by example the VMM methodology in the creation of
a comprehensive constrained-random verification environment using a transaction-based
approach. This includes generation of transactions and consumption of them via transactors.
The paper also addresses through graphical explanations how VMM macros and classes are used
in the makeup of a transaction-based verification testbench. The DUT used for this purposeis a
synchronous FIFO model with assertions. The testbench models and results are demonstrated.
The complete verification model is available for download.
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1.0 Why SystemVerilog for Verification

SystemVerilog is a rich language that provides constructs needed to support advanced
methodologies for verification of today’s complex designs. These methodologies include
transaction-based verification (TBV), coverage-driven verification (CDV), constrained-random
testing (CRT), and assertion-based verification (ABV). Functional coverage can be further
divided into temporal coverage (with SystemVerilog assertions (SVA)), and data coverage (with
covergroup). A good transaction-based verification with CRT relies on constrained
randomization of transactions and the channeling of those transactions to transactors for
execution (i.e., driving the device under test (DUT) signals for testing). These methodologies
can use the collection and access of functional coverage so as to dynamically modify the test
scenarios. An adaptation of these methodol ogies supported by reusable libraries is explained in
the book Verification Methodology Manual (VMM) for SystemVerilog Y. “VMM Standard
Library object code is available today for VCS users. VMM Standard Library source code,
which can be used with EDA tools compliant with IEEE P1800 SystemVerilog, is planned to be
available for license at no additional charge by VCS users and SystemV erilog Catalyst members

before the end of the year”, (September 21, 2005).?

1.1 SystemVerilog Constructs Supporting Verification

A summary of the SystemV erilog constructs supporting verification is shown in Table 1.1.

Table1l.1 SystemVerilog Constructsfor Verification

SystemVerilog
Construct

Verification Application

Interface and virtua
interface

Provides grouping of signals needed to be driven and viewed by the
verification model.

Class and virtual
class

Builds reusable extendabl e classes for the definition of constrained-
random variables and the collection of supporting tasks related to
common objectives.

Mailbox / Queue

Provides channeling and synchronization of transactions and data. Is
also used by scoreboard for verification

Clocking block

Identifies clock signals, and captures the timing and synchronization
requirements of the blocks being modeled.

Program block

Provides an entry point to the execution of testbenches. Creates a scope
that encapsulates program-wide data. Provides a syntactic context that
specifies scheduling in the Reactive region. Creates a clear separation of
testbench and design thereby eliminating race conditionsin older
Verilog.

covergroup

Provides coverage of variables and expressions, as well as cross coverage
between them.

Assertions, cover

Captures temporal behavior of the design as assumptions, checks those

( SystemVerilog behaviors, provides functional coverage and the reporting of information

Assertions) upon error. Assertions can interact with the testbench. ™

API Supports Application Programming Interface (API) for assertions and
coverage.
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The SystemVerilog class construct deserves some explanation because classes are core to the
VMM methodology. A class is a collection of data (class properties) and a set of subroutines
(methods) that operate on that data.
e Classes can beinherited to extend functionality.
Classes can be virtual (requiring a subclass or derived class)
Classes can be used to build libraries for common functions, e.g., VMM.
Classes must be instantiated and constructed to be used.
The randomize function can be used to randomize class variables (that are qualified via
an attribute, rand).
Classes can be typed, parameterized.
e Classes can be passed as objects to methods in other classes and to mailboxes and
queues.
e Classes can use virtua interfaces, with the actual interface passed to the constructors.
This allows the reuse of classes with multiple interfaces.

Randomization is very key to CRT for the creation of tests targeted toward a coverage-driven
verification methodology where the testplan is more focused on the coverage rather than directed
tests. SystemVerilog supports the generation of constrained-random values with the use of the
randomize function, the rand and randc type-modifier, randcase and randsequence statements,
and therich sets of constraints with the constraint construct.

Coverage is a very important ingredient in the verification process because it provides feedback
as to the progress of the verification effort. SystemVerilog offers two types of coverage:
temporal coverage with SVA’s cover, and data coverage with covergroup. It also allows them to
be used together - for instance a PCl abort condition can be detected viaa SVA property and the
slaves being addressed during such abort can be monitored (and the address space can be
effectively binned/grouped) using covergroup. The results of the coverage information can be
used to create a reactive testbench based on the coverage information extracted dynamically
during simulation.

Assertions play a key role in the verification process as they provide a concise way to capture
design behavior spread across multiple and possibly varying number of clock cycles. In
addition, assertions can be tightly coupled to the verification environment through the action
blocks or callsto tasks from within an assertion thread. They also can be used as SystemVerilog
events. Thisinteraction capability with the testbench can provide the following:
a. Write to a variable, thus having the capacity to modify the flow of the testbench.
b. Update user’s implementation of coverage. For example, bits of an initialized static
vector can be modified when an assertion (i.e., assert or cover) reaches a certain state
(e.g., passes or is covered). When that vector is all ONEs, then the desired coverage is
reached. In addition, SystemVerilog APl can aso extract coverage info.
c. Upon afailure, one could write to afile information about the failure, along with a text
message. That can include all the relevant variables of the design, the local variables of
the assertion thread, simulation time, severity level, etc.

4
SNUG San Jose 2006 VMMing a SystemV erilog Testbench by Example



d. SystemVerilog sequence can create an event when the sequence is finished, and that is
very useful to synchronize various testbench elements.

2.0 Why VMM?

SystemVerilog is a vast language with 550+ pages LRM (on top of |EEE Std 1364-2001 Verilog
HDL). Oneisvery likely to get trapped into its landscape and thereby using it in a sub-optimal
way to achieve the end goal - i.e., finding al bugs. A good methodology is the best way to use
the language to its optimum. Figure 2.0a shows the impact of such a methodology in capturing
the power of SystemVerilog. VMM represents a methodology supported by a standard library
that consists of a set of base and utility classes to implement a VMM-compliant verification
environment and verification components. VMM provides several benefits in the construction of
testbenches. These include unification in the style and construction of the testbench and in the
reporting of information; the quick build of alayered and reusable testbench; and the access to
high-level tests using constrained random stimulus and functional coverage to indicate which
areas of the design have been checked.

Good Methodology is Essential to
Capture the Power of SystemVerilog

Verification Methodology
Features Manual for SystemVerilog
(VMM)
Coverage Groups Pass/Fail
Events Virtual Methods
Assertions Coverage-Driven

Classes Inheritance Abstraction

Random Generation Interfaces Find More Bugs
Assertion Coverage Transactors in Less Time!

. i Solver .
Configuration Constraints
Coverage Points

Messages Data Structures

Verification IP Self-Checking

Figure 2.0a Impact of VMM Methodology in Capturing the Power of SystemVerilog

The VMM consists of several base classes as shown in Figure 2.0b, and described in the VMM
for SystemVerilog book. This paper will demonstrate via an example the application of some of
these services. However, the modeling used for this paper did not use all of the features of
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VMM, and we are restricting our discussions to the VMM features that we felt were most useful
for this ssimple example.

The mgjor differences between aVMM compliant testbench and a conventional transaction-
based testbench include the following aspects:
1. The formalization of the sequencing of steps taken during the verification cycle (See
VMM appendix A, vmm_env).
2. The methodology used to generate and consume transactions, including the automation
with the use of VMM macros.
3. The methodology and support used to adapt transactions to modifications through
callbacks.

4. Thelevel of support using the various base-class methods.
5. The methodology used to report logging and status information.
Simulation
Control
vmm_env
Data and
Message Transactions
Service /
— vmm_data
vmm_log VMM
) Extensible
Interfacing Transactors Verification
Transactors Component
vmm_channel vmm_xactor Xve_xactor

Figure2.0b VMM Basic Base Classes

3.0 Transaction-Based Verification of a FIFO

This section presents a testbench of a FIFO using the VMM methodology. Fundamentally,
VMM recommends a layered approach to building verification environments. While layered
testbench concepts have been around for several years now, there has not been any common
definition. The different interpretations of layered testbench caused the design of different
verification environments even within the same organization. Experience has shown that such
heterogeneous verification environments lead to too much redundancy. For example, a
verification IP developed by one group doesn’t fit easily well into another dlightly different
project/environment. A significant amount of effort can be easily saved when various teams
follow a unified methodology in the architecture of testbenches. For this to become redity, a
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reference verification architecture that is flexible to cater various domains needs to be devel oped.
VMM is the industry’s first non-proprietary, open, standard language-based verification
methodol ogy.

3.1 TheDUT

The design under test (DUT) is a synchronous first-in first-out (FIFO) model with the following
port connections:
nodul e fifo

(input clk, input reset_n, fifo_if.fslave_if_nmp f_if);

Those port connections include the clock, the reset, and the FIFO interface using with the slave
modport. Figure 3.1a. demonstrates the FIFO interface with the modports used throughout the
design and the testbench.

interface fifo_if(input wire clk,
input wire reset_n);
timeunit 1ns;
timeprecision 100ps;

Identifies sampling
and delays

/I import fifo_pkg::*; clocking driver_cb @ (posedge clk);
logic push; default input #setup_time
logic pop; output #hold_time;
wire full; input empty, full, data_out, error;
wire empty; output data_in, push, pop;
logic error; endclocking : driver_cb
word_t data_in;
word_t data_out; modport fdrvr_if_mp (clocking driver_cb);

parameter hold_time=3;
parameter setup_time =5;

Figure 3.1a FIFO Interface (filefifo_if.sv)

The paper addresses the PUSH and POP interface with one transactor (file fifo_cmd_xactor.sv)
to drive all the signals, and a monitor transactor (file fifo_mon_xactor.sv) to monitor the signals.
The complete model is shown in the appendix and is available for download.!”

A DUT typicaly carries with it a set of requirement documents and a set of interfaces.
SystemVerilog provides a useful construct, the interface to abstract the communication across
severa modules. Some designers use the SystemVerilog interface definition in the RTL design.
Others restrict the design to the Verilog style with individual port signals, instead of grouping
the signals with SystemVerilog interfaces. If an interface is not defined, it is necessary for the
verification engineer to define such an interface model as this facilitates the connections to the
verification environment defined in classes through the use of virtual interfaces.

An interface typically has tasks and assertions associated with the operation of the signals of the
interface. Examples of tasks in a FIFO interface include a push_task, a pop_task. VMM (rule
4-9) recommends the definition of those tasks associated with the interface in classes and
subclasses (ak.a. derived classes), separate from those defined in the interface. Interface
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assertions relate to the properties or timing relationships of those signals. Assertions can be
defined in the interfaces or in a property module bound to the DUT instance. The specifications
are used to build the interfaces and property module, as shown in Figure 3.1b.

5 ) DUT Interface *

Specifications (and supporting Property

- Interface - tasks) Module *

- Assertions 2

- Tasks >

* Recommended
Interfaces and Ports Ports only
DUT
DUT Interfaces

<« Interfaces e «—> POTtS
—sclocks —» clocks
—resets —> resets

Figure 3.1b. Specifications Used for Definition of Interfaces and Verification M odules
3.2 TheTestbench
3.2.1 Conceptual View

The basic idea of a transaction-based verification methodology, such as VMM, is to separate the
transaction from the transactor. While there are few varying definitions of these terms, hereisa
simple definition we follow in this paper. A transaction is basically “what needs to be tested”
and atransactor models “how to test”. Examples of atransaction are:

1. Instruction. This represents the high-level tasks to be executed, such as a READ,

WRITE, NO-OP, LOAD, etc.
2. Data. Thisrepresentsinformation such as address, data, number of cycles, etc.
3. Parameters. This can represent amode, asize, €etc.

In VMM, a transactor is a generic name, and there are several kinds of transactors such as
generator, driver, monitor, scoreboard etc. A direct equivalent of a typical VMM transactor is
what’ s conventionally known as BFM (Bus Functional Model) at the lower level. On the driver
side, a BFM takes a transaction as input and sends it to the DUT according to the underlying
protocol.

It is best to use SystemVerilog classes to declare transactions and transactors. The rationale
behind this guideline is as follows:. by definition a transaction has a limited lifetime - from the
time it gets generated to the time it is consumed by the DUT, checked for correctness etc. The
number of such transactions in a system is variable - this would logically mean that a dynamic
memory allocation of such transactions is a must have to make optimal use of simulation. By
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definition, constructs such as plain Verilog modules and SystemVerilog interfaces etc. are
“static” in nature - they exist throughout the simulation and hence are not suited for modeling
dynamic transactions. Another key reason to consider using SystemVerilog classes to model
transactions is the ability to easily derive and extend them to create variations of transactions
and to mimic real-life data streams such as Ethernet Packets. An Ethernet packet, as defined by
the standard, has several layers (such as L2, L3, L4 etc.), and each layer encapsulates another
one. With a conventional “Hardware Design Language” one is limited to use only a simple
modeling style that does not lend to good, maintainable and reusable code. The Software
domain has been handling such complexity in the past with great success with Object-Oriented
(O0O) programming style. SystemVerilog brings in that OO style to Hardware Verification via
the class data type.

VMM defines abase class named vmm_data to model transactions. It isused as the basis for all
transaction descriptors and data models. A simple example of a FIFO transaction modeled using
vmm_data is shown in Figure 3.2.1a.

class fifo_xactn extends vmm dat a;

rand fifo_scen_t ki nd; /'l see package for type
rand |l ogic [BI T_DEPTH 1: 0] data;
rand int i dl e_cycles;

tine xactn_tine;

endclass : fifo_xactn

Figure 3.2.1a. Transaction Class Example (file fifo_xactn.sv)

The vmm_data base class defines several virtual functions and tasks. A complete list is beyond
the scope of this paper. One such function is the vmm _data::copy() that should (VMM Rule
4-76) be extended to add relevant transaction fields. In our FIFO example, this function is
shown in Figure 3.2.1b.

function fifo_xactn fifo_xactn::copy(vnmdata cpy);

fifo_xactn | ocal xactn;

if (cpy == null) begin

| ocal _xactn = new,
end

else if (!$cast(local _xactn, cpy)) begin
"vimm fatal (1 og, "Attenpting to copy a non fifo_xactn instance");

copy = null;

return;
end

| ocal xactn. kind = this.kind;
| ocal _xactn.data = this.data;
| ocal _xactn.idle cycles = this.idle_cycles;
copy = |l ocal _xactn;
endfunction : copy

Figure 3.2.1b. Sample User-defined Copy Method (filefifo_xactn.sv)
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Other useful vmm_data functions include the compare() for comparison of transactions useful
with scoreboards to check for data integrity, and psdisplay() for the return of an image of the
transaction. The macro "vmm_channel (discussed later on) defines a channel class derived from
the vmm_data to transport instances of a specified class (e.g., atransaction).

Transactors are the workhorses of a transaction-based verification (TBV) environment; they
perform the actual job of transferring the data (transaction) to other units to perform atask, such
asdriving the DUT pins or driving the verification scoreboard.

This concept is represented in Figure 3.2.1c where in constrained-random testing, the
transactions defined in a transaction class are randomized with a generator and sent to a
transactor via a channel for the execution of those transactions. For example, a transaction such
asaPUSH /IDLE/ POP israndomized with constraints, and then sent to a channel (constructed
with a queue and characterized in the diagrams as a mailbox) via the put method. The put
method blocks if there is no room in the channel to insert another transaction. When the
transactor is ready to process another transaction, it extracts from the channel the next
transaction via the get method. The transactor then proceeds on executing the begotten
transaction.

Testbench

Program 7
€ &

: O
Monitor m> scoreboard Clock
transactors generators

DUT
Interfaces

14

Transactions | AN Transactors
channel

© @

Figure 3.2.1c High-level View of the Testbench

Note that the use of a channel provides several advantages, including the buffering and
separation between the generation and the consumption of the transactions. A second advantage
is the simplicity in clock synchronization between the generation and consumption side of the
transactions. Specifically, they do not need to be synchronous to a common clock because the
insertion and extraction of transactions is separate. A third advantage is the capability to easily
modify the transactions through callbacks to provide changes such as error injection. A fourth
advantage is capability to have generation (and even consumption) of the transactions be
performed by different agents/transactors.
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322

Testbench Outline

Figure 3.2.2 represents a structural view of the testbench. The testbench includes the following
objects:

1
2.

3.

Variablesdeclarations: These are variableslocal to the testbench

Interface instantiations. These are the DUT interfaces to provide the connection
between the stimulus drivers/monitors and the DUT.

Program instantiations. The program provides the control for testing the DUT. A
testbench may contain more than one program.

DUT instantiations. These are the devices under test.

Binding of property modules to DUT instances: Property module typically includes
assertions and coverage requirements.

Clock generators. These generators emulate the clocks in the system.

TESTBENCH
Variables and
- Interfaces*
| CLASSES |
{ * support > Test
i * transaction ! Program
i * transactor |
-+ " libraries ' S ——
""""""""""""" DUT | L té"gfogﬁy i Property | |
' module i/
RTL module Heesnsooes S
Clock
generator

Figure 3.2.2 Testbench Structure

3.23 Theprogram

SystemVerilog program provides an ideal encapsulation for all testbench related items. It acts as
entry and exit points for the smulation. SystemVerilog LRM has well defined semantics for
program that requires it to execute under reactive time-step, thereby eliminating any design-to-
testbench race conditions (one of the most recurring problems with plain Verilog testbenches and
many teams have spent unproductive debug cycles in detecting and resolving them in the past).
The program is responsible for the generation and verification of the test vectors. Figure 3.2.3a
represents the program for the verification of the FIFO model. The program makes use of the
VMM library, a user-defined set of constants and type definitions, a transaction class, and an
environment class. A program can have the following constructs. initial, continuous
assignment, final construct, module or generate item declaration, concurrent assertion item,
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timeunits declaration. It cannot contain always blocks, UDPs, modules, interfaces, or other
programs. VMM Rule 4-7 is a worthy rule related to the program block that states:
“synchronous interface signals shall be sampled and driven using a clocking block.  This
approach will avoid race conditions between the design and the verification environment, and it
will alow the verification environment to work with RTL and gate-level models of the DUT
without any modifications or timing violations.” See files fifo_if.sv, fifo_cmd_xactor.sv for an
application of the clocking blocks, and section 3.3 for the resulting display of hold times
specified in the clocking blocks.

Per VMM guidelines, the initial block constructs an environment object and starts the run
method from the environment class. The vmm_env::run() execution sequence is described in the
VMM book and is shown in Figure 3.2.3b. That run method essentially builds and starts the
verification environment, including the fifo xactn, the generator of transactions into the
transaction channel with the fifo_xactn_push_atomic_gen, the transactor to drive the FIFO
interface, and the monitor to extract the observed transactions on the FIFO interface.

programfifo_test_pgm (fifo_if fifo_if_O

timeunit 1ns; timeprecision 100ps;
“include "vnm sv"
“include "fifo_pkg.sv"
“include "fifo_xactn.sv"
“include "fifo_env.sv"
vm | og | og;
fifo_env fifo_env_O;
fifo_xactn nmy_push_xaction;

initial
begi n
/1 Build all conponents of an environnent - testbench

|l og = new("Pgm Logger", 0); .
fifo env. 0 = new(fifo if 0): élcéga:rﬁg‘frg'omo
"vimm note(l og, "Started");
fork : f1 -
j oif Inf gaﬁgv—o' run(); \‘ Build of environment and ’
#100000- control of ssimulation.
end
endprogram : fifo_test_pgm

Figure3.2.3a. High-Level Structural View of the Program (file fifo_pgm.sv)

The formal arguments of the program include the fifo interface (and may include other interfaces
and signals).
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run()

Base Class

virtual

geq_cfg(}

DUT-Specific Extension

virtual

virtual

build()

gen cfg()

Vkrtual

virtual

reset dut ()

build()

viirtual

virtual

cfg dut ()

reset dut()

viirtual

virtual

start ()

cfg dut ()

virtual

virtual

wait for end(])

start()

virtual

virtual

stop()

wait for end()

viirtual

virtual

cleanup()

stop ()

viirtual

virtual

report ()

cleanup ()

viirtual

v

report ()

3.24 A generalized test flow mechanism

In general, every test that is being run in asimulation follows a test-flow such asinitialize — start
In many environments this is not defined a priori leading to various
difficulties such as ease of integration, wasted debug cycles (e.g., after hours of debug, problem
might be root caused to premature start of packet transmission - before configuring the DUT
registers). VMM defines a well thought out flow to avoid such problems, in addition to being
very flexible to suit different environments. It also has built-in checks to make sure the steps are

-wait_for_end - finish.

Figure 3.2.3b vmm_env::run() Execution Sequence
(from Verification Manual M ethodology M anual for SystemVerilog)

not by-passed accidentally.

The run() method consists of the calls to other methods, which are summarized below. Many of

the specific extensions for these methods are described in this paper.
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gen_cfg()

This method creates a random configuration of the test environment and DUT. It may choose
the number of input and output ports in the design and their speed, or the number of driverson a
bus and their type (master or slave). One can also randomly select the number of transactions,
percent errors, and other parameters. The goal is that over many random runs, one will test
every possible configuration, instead of the limited number chosen by directed test writers.

build()

This method builds the testbench configuration generated in the previous method. This includes
generators and checkers, drivers and monitors, and anything else not in the DUT. An example of
the user-defined build method is shown in section 3.2.6.

cfg_dut ()

In this method one downloads the configuration information into the DUT. This might be done
by loading registers using bus transactions, or backdoor loading them using $readmemh/b or a
hierarchical reference to configuration registers (e.g., top.chip.pci_blk.cfg 0= 10), or C code.

start()

This method starts the test components. This is usually done by starting the transactor objects.
For example, the start() task in class fifo_env (which extends vimm _env) call the start_xactor(),
which in turn call the main() tasksin the transactors. Thisisakey step in the whole flow - thisis
where all components of the testbench are starting their intended operations. For all transactors
that are built in the environment, their individual start_xactor() task should be called in this step.

task start(); // in fifo_env.sv file
super.start();
this. push_gen_0.start_xactor();
this.fifo_cnd _xactor_O0.start_xactor();
this.mon_0.start_xactor();

endtask : start

wait_for_end()

This method waits for the end of the test, usually done by waiting for a certain number of
transactions or a maximum time limit. Depending on the design under test and the nature of test,
this might become complicated - for instance, one may need to monitor internal state machines
to see when they return to their idle states.

stop()
This method stops the data generators and waits for the transactionsin the DUT to drain out.

cleanup()
This method checks recorded statistics and sweeps for lost data.
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report()

This method prints the final report. Note that vimm log will automatically print its report at the
end of simulation.

The following sections describe the transaction classes, the creation of channels, the generation
of transactions into the channels, the consumption of transactions from the channels, the build of
the environment, and the start of execution. Simulation results are then presented.

3.25 Transaction class

In a TBV methodology, a transaction defines the basic data model of the system, establishes a
common currency for the system. The individual properties'members of a transaction may need
to be randomized to support a CRT on top of TBV. The transaction classis defined as a derived
classof vimm dat a to take advantage of methods available from this base class. Also consistent
use of vmm_data to derive transactions will ensure same look and feel and shall help in
maintenance of the code over a period of time. Figure 3.2.4 represents the transaction class for
the FIFO.

class fifo_xactn extends vimm dat a;

rand fifo_scen_t ki nd; Xgaseclass
rand | ogic [BI T_DEPTH 1: 0]

dat a;
rand int i dl e_cycl es;
tinme xactn_ti ne;

constraint cst_data {
data < 1024,
}

constraint cst_idle {
idle cycles inside {[1:3]};

}
constraint cst_xact _kind {
kind dist {
PUSH : = 400,
POP : = 300,
PUSH_POP : =200,
| DLE : = 300,
RESET : =1
H
}
static vimmlog log = new("fifo_push", "");

Make static to minimize

function new() ! memorv usage (VMM pa. 383)

super.new(this.log);
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"vimm note(this.log, "Message from constructor");
endf unction : new

virtual function string psdisplay(string prefix ="");
$sf or mat (psdi spl ay,
"% Fifo push Xaction % \n",
prefix, this.kind. nane());
endfunction : psdisplay
extern virtual function fifo_xactn_push
copy(vmm.data cpy = null);

endcl ass: fifo_xactn_push

Figure 3.2.4. Transaction Base Class (filefifo_xactn.sv)

Some of the important methods inside vmm_data are copy(), psdisplay(), etc. Every vmm data
derivative should implement the actua definitions for these functions. Function psdisplay()
defines a consistent way to display every transaction object in the system. It returns a string, and
hence can be easily used in any $display call etc. The copy() method provides a very important
functionality of implementing what constitutes a true copy of the transaction.

3.2.6 Transactor class

Transactors represent the workhorses of the system. All the BFMs, generators, scoreboards,
monitors etc. are built as transactors. VMM defines a base class named vmm xactor for a
generic transactor. All transactors in a system should be derived from this vmm xactor. A
vmm _xactor has severa hooks for allowing basic functionalities as well as advanced features
such as flow control. A detailed look into how a transactor operates is provided later in the

paper.

3.2.7 Creation of Channels

A channel provides the structures (e.g., queues) to store the transactions, and provides the
support to process those transactions. One side of the channel is the generator putting
transactions into the channel. The functional transactor (e.g., the BFM) gets the transactions
out of the channel, and executes them. The VMM channel is constructed with a queue that has
both high-water and low-water marks to fine-tune the interactions between the producer and
consumer. Channels allow flow control, so the put() method will block if the channel is full.
The get() method removes the transaction from the end of the channel, while peek() provides a
handle to it without removal. Both the get() and the peek() block if the channel is empty. Note
that a channel acts like a mailbox, and is symbolically represented as a mailbox in the diagrams.

To facilitate the implementation of channels VMM automatically creates a derived class from
the user-defined transaction class using the "'vmm_channel macro as shown in the example below

(seefilefifo_xactn.sv):
“vimm channel (fifo_xactn_push)
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That macro creates the class fifo_xactn _push_channel that produces a strongly typed queue to
help prevent coding errors. Figure 3.2.5 represents a graphical view for the creation of the
channel class and the creation of the transaction generator (discussed in the next subsection).

%Iass 1 ‘'vmm_channel
J fifo_xactn (fifo_xactn)

fifo_xactn
and, Constraints | 11 IECECEE _xactn_

class

channel

‘vmm_atomic_gen (fifo_xactn,
"FIFO PUSH Xaction Generator") c|ass

1N - | fifoxactn
atomic_gen

Figure 3.2.5 Creation of Channelsand Generatorsfrom Transactions
(Seefilesfifo_xactn.sv, fifo_env.sv)

3.2.8 Generation of Transactions

In a CRT methodology, the default transactions are randomly generated. This generation can be
accomplished as follows:
e Instantiate a“blueprint” of the object to be generated (e.g., a new transaction).
e Construct it, randomize it.
e Push it to the output channel so that they can be extracted by the down-stream
transactors. Note that the pushing can be blocked when the channel isto capacity.
e Loop process.

To support this feature in an automatic manner, VMM provides a macro "vmm_atomic_gen and
‘'vmm_scenario_gen for the creation of generator classes for atomic (purely random with no
sequence) and sequence generation of transactions. In this model we used a simple automatic

generator with the pre-defined macro for simplicity:
"vimm atom c_gen (fifo_xactn, "FIFO PUSH Xaction Generator")

This macro creates the class fifo_xactn_atomic_gen. When this classis instantiated, connected to
the channel, and started, then the transactions are automatically generated, randomized and put
into the channel for extraction by the consumer. The user does not have to create or call a
method to explicitly do this randomization / generation function.

The application of this generated class is demonstrated in the build method of fifo_env, as shown
in Figure 3.2.6a.
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/1 Infile fifo_env.sv
/! Channel instance

fifo_xact n_channel fifo_push_channel;
/'l CGenerator instance
fifo_xactn_atom c_gen push_gen_0;
function void build(); A
this.fifo_push _channel = // instantiate channel
new "push_chan","0"); i

this.push_gen 0 = /1l instantiate generator
new ("Push Xaction generator”, 0); @

this. push_gen_0.out _chan = // Connect channel to generator
this.fifo_push_channel;

endfunction : build

Figure 3.2.6a Generation of Transactionsinto Channels (filefifo_env.sv)

Figure 3.2.6b represents a graphical view of this generation of transactions into channels.

m function void build();

this.fifo_push_channel =

class new("push_chan","0");
fifo_xactn_
channel this.push_gen 0=
new ("Push Xaction generator", 0);
fifo_push_channel
this.push_gen_0.out_chan =
/ this.fifo_push_channel;

class @

fifo_xactn_ o'

i .
atomic_gen

Figure 3.2.6b Generation of Transactionsinto Channels
3.2.9 Consumption of transactions from the channels

The transactor class is responsible for extracting (or getting) the transaction from the channel,
and parsing the transaction into the vector sequences used by the DUT. The transactor needs to
communicate the assertion of vectors onto signals. To facilitate reuse, those signals are defined
into virtual interfaces. In this example, the FIFO driver interface is of type fifo_if. fdrvr_if_mp,
Figure 3.2.7arepresents the consumption of transactions from the channel.
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The build() method in the user-defined environment (file fifo_env.sv) creates the simulation
environment. Figure 3.2.7b demonstrates the generation and consumption of transactions
through the use of channels for transaction transfers, the use of the atomic generator for the
production of the transactions into the channels, and through instantiation of the transactor for
the consumption of the transactions.

The main task in the transactor gets the transaction from the channel, analyzes its contents, and
drives signals onto the virtual interface. This is demonstrated in Figure 3.2.7c. The main task
of the fifo_xactor derived class (extended from vimm_xactor) is automatically started by the base
class vmm_xactor.

class fifo_cmd_xactor extends vmm_xactor; |
virtual fifo_if.fdrvr_if _mp f_if; class

fifo_xactn_channel in_chan; fifo xactn
_ _ _ channel |
function new(string instance, "~
int unsigned stream_id = -1, =

virtual fifo_if.fdrvr_if_mp new_vir_if,
fifo_xactn_channel new_in_chan);
super.new("Fifo COMMAND Layer Push Xactor", instance, stream_id);
this.f_if = new_vir_if;
this.in_chan = new_in_chan;
endfunction : new

task main(); ﬁarted by fifo_env::start()

forever

begin : main_loop Gy
fifo_xactn_push push_xaction; €
this.in_chan.get(push_xaction); >
case (push_xaction.kind)

PUSH : this.push_task(push_xaction.data);

]

Figure 3.2.7a. Consumption of Transactions from the channel (seefilefifo_cmd_xactor.sv)
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m function void build();
this.fifo_push_channel =

class new("push_chan","0");

fifo_xactn_
channel

this.push_gen 0=
new ("Push Xaction generator", 0);

fifo_push_channel o
7 this.fifo_cmd_xactor_0 =
/ * new("PUSH_XACTOR",

class \ V.il'_if,
fifo_push_channel
fifo_xactn_ Py );
)

atomic_gen

this.push_gen_0.out_chan =
push_gen_0; this.fifo_push_channel;

class

fifo_cmd_xactor

fifo_cmd_xactor_0;

Figure 3.2.7b. Generation and Consumption of Transactions

class fifo_cnd_xactor extends vnm xactor;

VMM rule 4-93 — All threads shall be started in the

task main(); extension of the vmm_xactor::main() task.

fork main() is started by fifo_env::start_xactor()
super. mai n();

j 0i n_none

forever

begin : main_| oop Extracting the
fifo_xactn push_xaction; transaction from
this.in_chan. get (push_xaction); the channel

case (push_xacti on. ki nd)
PUSH : this.push_task(push_xaction. data);
POP : this.pop_task();
PUSH POP : this. push_pop_task(push_xaction. data);
IDLE : this.idle_task(push_xaction.idle_cycles);
RESET : this.reset _task(5);

endcase
end : main_| oop
endtask : main
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task push task (logic [BIT_DEPTH 1:0] data);
begi n
$di splay ("%t %n Push data %®h ", $tine, data);
f _if.driver_cb.data_in <= data; // using clocking bl ock
f if.driver_cb. push <= 1'bl;
f_if.driver_cb.pop <= 1'DbO;
@( f_if.driver_cb);
f _if.driver_cb.push <= 1'DbO;
end
endt ask : push_task

Figure 3.2.7c. Execution of Transaction by Transactor (filefi fo_cnd_xact or. sv)

3.2.10 Monitoring of Transactions

“A monitor is passive transactor that autonomously reports observed data or transactions. It
may include a checker or equivalent checking functionality for the observed protocol, but not the
data or transactions transported by the protocol”. Thus, the monitor examines the interface,
creates a transaction based on what is observed on the interface, and puts that observed
transaction onto amonitor channel. That process is demonstrated graphically in Figure 3.2.8a.

class
l/
fifo_xactn_ Gl
channel ="
class mon_push_channel
fifo_mon_xactor

fifo_xactn cur_push_xactn;

task fifo_mon_xactor::mon_push();
while (1) begin : mon_push_loop
@(this.f_if.mon_cb);
if (this.f_if.mon_cb.push ===1'b1) begin
this.cur_push_xactn = new();
this.cur_push_xactn.data = this.f_if.mon_cb.data _in;
this.cur_push_xactn.xactn_time = $time;

@ 07
5

this.push_out_chan.put(this.cur_push_xactn);
end // if
end : mon_push_loop
endtask : mon_push

Figure 3.2.8a Putting Transactionsinto Monitor Channel (filefifo_mon_xactor.sv)
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3.2.11 ClassRelationshipsin UML

To express the class relationships of the testbench design model, a UML diagram was created
using StartUML™ [5]. These are shown in Figure 3.2.11aand Figure 3.2.11b. The diagram
demonstrates the class rel ationships between the classes, and the class objects, operators. Design
patterns are addressed in the book Design Patterns [6] and is a recommended reading.

vmm_data

i

fifo_xactn

+rand fifo_scen_t kind;
+rand logic [BIT_DEPTH-1:0] data;
+rand int idle_cycles;

‘ +new()
‘ + psdisplay(string prefix = "*)()

‘ <<macro>>
‘ “vmm_channel (fifo_xactn)

vmm_xactor

=
=
(o)

C

fifo_if

fifo_cmd_xactor

+virtual fifo_if f_if;
+vmm_log log;
+fifo_xactn_channel in_chan;

+new( virtual fifo_if new_vir_if, fifo_xactn_channel
+main()

new_in_chan); ()

fifo_xactn_channel

‘ <<macro>>
‘ “vmm_atomic_gen(fifo_xactn, ".. Xaction Genr")

fifo_xactn_atomic_gen

=] +fifo_xactn

+fifo_xactn_channel

Figure 3.2.11a Class Relationships of the Testbench Design M odel

vmm_env

fifo_env

+fifo_cmd_xactor fifo_cmd_xactor_O;
+fifo_xactn_channel fifo_push_channel;
+fifo_xactn_channel mon_push_chan;
+virtual fifo_if vir_if;

+push_cfg push_cfg_0;

+ fifo_xactn_atomic_gen push_gen_0;
+ fifo_mon_xactor mon_0;
+fifo_log_fmt log_fmt_cntl;

+ vmm_log log;

+new(virtual fifo_if new_vif)
+build()

+reset_dut()

+start()

+wait_for_end()

Figure 3.2.11b Class Relationships of the Testbench Design Model
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3.2.12 Message Service

The message service uses the vmm _log class. This class and its supporting functions and macros
help to ensure a consistent look and feel to the messages issued from different sources. This
section demonstrates an example in the use of the vimm _|og class and macros.

The classfifo_xactn_push demonstrates the use of vmm_log and the definition of the Synopsys
vcsfunction psdisplay. Figure 3.2.12a provides a snippet of the code.

static vnmlog log = new"fifo_push", "");
function new();

super. new(t his.|log);

“vmm not e(this.log, "Message fromconstructor");
endfunction : new

virtual function string psdisplay(string prefix ="");
$sformat (psdi splay, "% Fifo push Xaction % \n",
prefix, this.kind. nanme());
endfunction : psdisplay

Figure 3.2.12a. Application of vmm_log (file fifo_xaction.sv)

Theclassfifo_cmd xactor demonstrates the application of “vmm_note macro and the $psprintf.
Figure 3.2.12b provides a snippet of that code.

vim | og | og;

function new(string i nstance,
i nt unsigned streamid = -1,
virtual fifo_if.fdrvr_if_nmp newvir _if,
fifo_xactn_push new_ i n_chan);

super. new("Fi fo COWAND Layer Push Xactor",
i nstance, stream.d);
this.f _if = newvir_if;
this.in_chan = new_i n_chan;
this.log = new("Fi fo COWAND Layer Xactor","LoggerQ0");
“vhmm note(this.log, "Push CVD Xactor new');
endfunction : new

task main();

begin : main_| oop
fifo_xactn push_xaction;
“vhm not e(t hi s. | og,
"About to Get a new fifo xaction fromin_channel ");
this.in_chan. get (push_xaction);
“vhm _not e(t hi s. | og,
$psprintf("Got a new fifo xaction fromin_channel % ",
push_xacti on. psdi splay()));

Figure 3.2.12b. Application of "vmm_note and the $psprintf (filefifo_cmd_xactor.sv)
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During simulation, Figure 3.2.12c demonstrates a sample text of what was displayed for these
functions and macros.

0.00 ns Pgm Logger [Normal: NOTE] | Started

0.00 ns Fifo COVWAND Layer Xactor [Normal:NOTE] | Push CMD_Xactor new

0.00 ns fifo_push [Nornal:NOTE] | Message from consutructor

0.00 ns FIFO Env Logger [Normal:NOTE] | Simshall run for no_of _xactions 238

1950.00 ns fifo_push [Normal: NOTE] | Message from constructor

1950.00 ns Fifo COMWAND Layer Xactor [Normal:NOTE] | About to Get a new fifo
xaction fromin_channel

1950. 00 ns Fifo COVMAND Layer Xactor [Normal:NOTE] | CGot a new fifo xaction
fromin_channel Fifo push Xaction PUSH POP

1950.00 ns fifo_ tb.utest pgm\fifo_cnd _xactor::push pop_task Push data e

Figure 3.2.12c Sample Display of Simulation M essages

3.3 Simulation Results

All simulations were performed with Synopsys VCS Version X-2005.SP1. Figure 3.3a shows
the assertion failure summary for the property module bound to the DUT. Figure 3.3b shows a
Push Error (Push on FULL), while Figure 3.3c demonstrates a Pop Error (POP on EMPTY

Filker: Time Fange: {0 - 1C00007)
First Fall Enceed | First Fail Started Delta Instanca Aszerlion Cffending
20500 20500 0 fifo_th.ffo_rtl 1 ap_nop_error |
20500 20300 0 fifo_tb.fifo_rtl_1 fifo_props_ ap_pop_errar
127500 127500 0 fifo_th.fifo_rtl_t ap_push_eror_|
127300 127300 0 fifo_th fifo_rtl_1.fifo_props_| ap_push_grror
241530 241530 0 fifo_th.utest_pgm fifio_cmdl_pactor cidle_fask a0 ¢rum_idle_cyeles < 4}
tAssertion Falure Summary! Afssertions /

Figure 3.3a Assertion Failure Summary
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3.4 File Structure and Compilation

Table 3.4. demonstrates the file Structure and the purpose of each file. Figure 3.4aisa
graphical representation of the relationship between thefiles.

The compilation and simulation of the model with Synopsys VCS simulator can make use of the
Makefile in the vcs subdirectory, as shown in Figure 3.4b. Thefilelist is shownin Figure 3.4c.

al | :
vcs -debug_all -sverilog -f flist +incdir+../ -ntb_opts rvm
run:
sinv o -gui &
cl ean:
Jrm-fr csrc* sinv* scsint *vpd ag* session* work/* WORK/ *
*.s0 *.log test* cnt ucli* worklib/*

Figure 3.4b. Makefilefor Compilation with Synopsys VCS Simulator (file ves/M akefile)

../fifo_pkg.sv
../fifo_props.sv
Ififo_if.sv

. Ififo_rtl.sv
../fifo_pgm sv
./top_th.sv

Figure 3.4c. Filelist used for Compilation (file vsc/flist)

Note that the compilation list does not include all the files used by the testbench. Thisis because
the program file (fifo_pgm.sv) had include statements:

“include the "vmm.sv"

“include "fifo_pkg.sv"

“include "fifo_xactn.sv"

‘include "fifo_env.sv"

In addition, the fifo_env.sv file has include statements:
“include "fifo_log_fmt.sv"
“include "fifo_cmd_xactor.sv"
“include "fifo_gen_ xactor.sv"
“include "fifo_mon_xactor.sv"
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Table3.4. File Structure and Functions

File Function Used by
fifo_pkg.sv Defines types and parameters. . ALL
fifo_if.sv Defines the FIFO interface. RTL, property models,
and by program,
testbench, transaction
and transactors
fifo_xactn.sv Defines the transaction class with the “vmm_channel macro

constraints
Also used for the channel generation with:
“vmm_channel (fifo_xactn)

for generation of
channel,
‘vmm_atomic_gen
macro for generation
of atomic generator,
monitor transactor for
creation of transaction
from observed values
on bus interface.

fifo_gen_ xactor.sv

Uses the macro "vmm_atomic_gen for
generation of atomic generator, defines the
constraints for the number of transactions.

Environment for
creation of the build
modedl,

fifo_cmd xactor.sv

Provides the transactor definition to drive the
FIFO modsdl.

FIFO environment

fifo_log_fmt.sv

Defines formatting information for display.

FIFO environment

fifo_mon_xactor.sv

Creates a copy of the observed transaction onto
atransaction channel.

Scoreboard, top level

fifo_env.sv Creates the build and start for smulation program
fifo_pgm.sv Creates the modeling for smulation and Top level
initiates the run in the environment
fifo_props.sv Defines the properties for assertions Top level for bind
fifo_rtl.sv Represents the FIFO RTL DUT. Top level
top_th.sv Represents the top level and instantiates the none
RTL, the bind, the monitor, etc.
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vmm.sv ‘ fifo_pkg.sv }_,all [ 1 Infifo_env.sv

o G ted cl = In fifo_pgm.sv

fitoitsv | vom_ S cnerated lasses

: channel : fifo_xactn_ :—
—{ fifo_xactn.sv % ——————— q channel :
: VMMmM_atomic_  -r-immimemimimemimimemeg
fifo_gen_ gen  _ +  fifo_xactn_ i
xactor.sv _——=9C0 _ _,! : ;
i atomic_gen !

(fifo_xactn,.))

r : fifo_cmd_xactor.sv < @

fifo_log_fmt.sv

g top_tb.sv

?

fifo_mon_xactor.sv

A
®

A 4
fifo_env.sv
\

A 4

A

vy

fifo_pgm.sv

fifo_props.sv —‘

fifo_rtl.sv

Figure 3.4. File Structure and Relationships

4.0 Conclusionsand Recommendations

Our experience with VMM and assertions was very positive because VMM represents a
methodology that addresses the important phases of the verification process in a structured
manner, along with the potential for easy expansion and reuse. The assertions along with the
random transactions did detect an error in the RTL model for the FULL flag. The VMM library
and macros do help in the building of the model. However, the application of VMM requires a
good understanding of the use of the library elements and macros. This knowledge can be
acquired through training, examples, and the use of the VMM for SystemVerilog book. We
hope that this paper provided a better understanding of the generation and consumption of
transactions written alaVMM.
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