

VMMing a SystemVerilog

Testbench by Example

Ben Cohen
Srinivasan Venkataramanan

Ajeetha Kumari

VhdlCohen Publishing / Consulting

ben@abv-sva.org

ABSTRACT

This paper describes a SystemVerilog transaction-based testbench compliant to the Verification
Methodology Manual (VMM). It explains by example the VMM methodology in the creation of
a comprehensive constrained-random verification environment using a transaction-based
approach. This includes generation of transactions and consumption of them via transactors.
The paper also addresses through graphical explanations how VMM macros and classes are used
in the makeup of a transaction-based verification testbench. The DUT used for this purpose is a
synchronous FIFO model with assertions. The testbench models and results are demonstrated.
The complete verification model is available for download.

2
SNUG San Jose 2006 VMMing a SystemVerilog Testbench by Example

Table of Contents

1.0 Why SystemVerilog for Verification .. 3
1.1 SystemVerilog Constructs Supporting Verification.. 3

Table 1.1 SystemVerilog Constructs for Verification.. 3
2.0 Why VMM? .. 5
3.0 Transaction-Based Verification of a FIFO.. 6

3.1 The DUT ... 7
3.2 The Testbench ... 8

3.2.1 Conceptual View... 8
3.2.2 Testbench Outline ... 11
3.2.3 The program .. 11
3.2.4 A generalized test flow mechanism .. 13

gen_cfg() ... 14
build() .. 14
cfg_dut () ... 14
start() ... 14
wait_for_end()... 14
stop() ... 14
cleanup().. 14
report()... 15

3.2.5 Transaction class ... 15
3.2.6 Transactor class... 16
3.2.7 Creation of Channels... 16
3.2.8 Generation of Transactions ... 17
3.2.9 Consumption of transactions from the channels ... 18
3.2.10 Monitoring of Transactions... 21
3.2.11 Class Relationships in UML ... 22
3.2.12 Message Service.. 23

3.3 Simulation Results .. 24
3.4 File Structure and Compilation ... 27

4.0 Conclusions and Recommendations.. 29
5.0 Acknowledgements ... 29
6.0 References ... 30

3
SNUG San Jose 2006 VMMing a SystemVerilog Testbench by Example

1.0 Why SystemVerilog for Verification

SystemVerilog is a rich language that provides constructs needed to support advanced
methodologies for verification of today’s complex designs. These methodologies include
transaction-based verification (TBV), coverage-driven verification (CDV), constrained-random
testing (CRT), and assertion-based verification (ABV). Functional coverage can be further
divided into temporal coverage (with SystemVerilog assertions (SVA)), and data coverage (with
covergroup). A good transaction-based verification with CRT relies on constrained
randomization of transactions and the channeling of those transactions to transactors for
execution (i.e., driving the device under test (DUT) signals for testing). These methodologies
can use the collection and access of functional coverage so as to dynamically modify the test
scenarios. An adaptation of these methodologies supported by reusable libraries is explained in
the book Verification Methodology Manual (VMM) for SystemVerilog [1]. “VMM Standard
Library object code is available today for VCS users. VMM Standard Library source code,
which can be used with EDA tools compliant with IEEE P1800 SystemVerilog, is planned to be
available for license at no additional charge by VCS users and SystemVerilog Catalyst members
before the end of the year”, (September 21, 2005).[2]

1.1 SystemVerilog Constructs Supporting Verification

A summary of the SystemVerilog constructs supporting verification is shown in Table 1.1.

Table 1.1 SystemVerilog Constructs for Verification

SystemVerilog
Construct

Verification Application

Interface and virtual
interface

Provides grouping of signals needed to be driven and viewed by the
verification model.

Class and virtual
class

Builds reusable extendable classes for the definition of constrained-
random variables and the collection of supporting tasks related to
common objectives.

Mailbox / Queue Provides channeling and synchronization of transactions and data. Is
also used by scoreboard for verification

Clocking block Identifies clock signals, and captures the timing and synchronization
requirements of the blocks being modeled.

Program block Provides an entry point to the execution of testbenches. Creates a scope
that encapsulates program-wide data. Provides a syntactic context that
specifies scheduling in the Reactive region. Creates a clear separation of
testbench and design thereby eliminating race conditions in older
Verilog.

covergroup Provides coverage of variables and expressions, as well as cross coverage
between them.

Assertions, cover
(SystemVerilog
Assertions)

Captures temporal behavior of the design as assumptions, checks those
behaviors, provides functional coverage and the reporting of information
upon error. Assertions can interact with the testbench. [3]

API Supports Application Programming Interface (API) for assertions and
coverage.

4
SNUG San Jose 2006 VMMing a SystemVerilog Testbench by Example

The SystemVerilog class construct deserves some explanation because classes are core to the
VMM methodology. A class is a collection of data (class properties) and a set of subroutines
(methods) that operate on that data.

Classes can be inherited to extend functionality.
Classes can be virtual (requiring a subclass or derived class)
Classes can be used to build libraries for common functions, e.g., VMM.
Classes must be instantiated and constructed to be used.
The randomize function can be used to randomize class variables (that are qualified via
an attribute, rand).
Classes can be typed, parameterized.
Classes can be passed as objects to methods in other classes and to mailboxes and
queues.
Classes can use virtual interfaces, with the actual interface passed to the constructors.
This allows the reuse of classes with multiple interfaces.

Randomization is very key to CRT for the creation of tests targeted toward a coverage-driven
verification methodology where the testplan is more focused on the coverage rather than directed
tests. SystemVerilog supports the generation of constrained-random values with the use of the
randomize function, the rand and randc type-modifier, randcase and randsequence statements,
and the rich sets of constraints with the constraint construct.

Coverage is a very important ingredient in the verification process because it provides feedback
as to the progress of the verification effort. SystemVerilog offers two types of coverage:
temporal coverage with SVA’s cover, and data coverage with covergroup. It also allows them to
be used together - for instance a PCI abort condition can be detected via a SVA property and the
slaves being addressed during such abort can be monitored (and the address space can be
effectively binned/grouped) using covergroup. The results of the coverage information can be
used to create a reactive testbench based on the coverage information extracted dynamically
during simulation.

Assertions play a key role in the verification process as they provide a concise way to capture
design behavior spread across multiple and possibly varying number of clock cycles. In
addition, assertions can be tightly coupled to the verification environment through the action
blocks or calls to tasks from within an assertion thread. They also can be used as SystemVerilog
events. This interaction capability with the testbench can provide the following:

a. Write to a variable, thus having the capacity to modify the flow of the testbench.
b. Update user’s implementation of coverage. For example, bits of an initialized static
vector can be modified when an assertion (i.e., assert or cover) reaches a certain state
(e.g., passes or is covered). When that vector is all ONEs, then the desired coverage is
reached. In addition, SystemVerilog API can also extract coverage info.
c. Upon a failure, one could write to a file information about the failure, along with a text
message. That can include all the relevant variables of the design, the local variables of
the assertion thread, simulation time, severity level, etc.

5
SNUG San Jose 2006 VMMing a SystemVerilog Testbench by Example

d. SystemVerilog sequence can create an event when the sequence is finished, and that is
very useful to synchronize various testbench elements.

2.0 Why VMM?

SystemVerilog is a vast language with 550+ pages LRM (on top of IEEE Std 1364-2001 Verilog
HDL). One is very likely to get trapped into its landscape and thereby using it in a sub-optimal
way to achieve the end goal - i.e., finding all bugs. A good methodology is the best way to use
the language to its optimum. Figure 2.0a shows the impact of such a methodology in capturing
the power of SystemVerilog. VMM represents a methodology supported by a standard library
that consists of a set of base and utility classes to implement a VMM-compliant verification
environment and verification components. VMM provides several benefits in the construction of
testbenches. These include unification in the style and construction of the testbench and in the
reporting of information; the quick build of a layered and reusable testbench; and the access to
high-level tests using constrained random stimulus and functional coverage to indicate which
areas of the design have been checked.

Figure 2.0a Impact of VMM Methodology in Capturing the Power of SystemVerilog

The VMM consists of several base classes as shown in Figure 2.0b, and described in the VMM
for SystemVerilog book. This paper will demonstrate via an example the application of some of
these services. However, the modeling used for this paper did not use all of the features of

© 2005 Synopsys, Inc. (12)

Good Methodology is Essential to Good Methodology is Essential to
Capture the Power of SystemVerilogCapture the Power of SystemVerilog

Classes Inheritance

Virtual Methods

Coverage Points

Coverage Groups

Assertions

Assertion Coverage

Constraints
Solver

Random Generation

Verification IP

Coverage-Driven

Self-Checking

Abstraction

Transactors

Configuration

Messages

Events
Pass/Fail

Data Structures

Interfaces

SystemVerilog LanguageSystemVerilog Language
FeaturesFeatures

Verification Methodology
Manual for SystemVerilog

(RVM)(VMM)

Find More BugsFind More Bugs
in Less Time!in Less Time!

© 2005 Synopsys, Inc. (12)

Good Methodology is Essential to Good Methodology is Essential to
Capture the Power of SystemVerilogCapture the Power of SystemVerilog

Classes Inheritance

Virtual Methods

Coverage Points

Coverage Groups

Assertions

Assertion Coverage

Constraints
Solver

Random Generation

Verification IP

Coverage-Driven

Self-Checking

Abstraction

Transactors

Configuration

Messages

Events
Pass/Fail

Data Structures

Interfaces

SystemVerilog LanguageSystemVerilog Language
FeaturesFeatures

Verification Methodology
Manual for SystemVerilog

(RVM)(VMM)

Find More BugsFind More Bugs
in Less Time!in Less Time!

6
SNUG San Jose 2006 VMMing a SystemVerilog Testbench by Example

VMM, and we are restricting our discussions to the VMM features that we felt were most useful
for this simple example.

The major differences between a VMM compliant testbench and a conventional transaction-
based testbench include the following aspects:

1. The formalization of the sequencing of steps taken during the verification cycle (See
VMM appendix A, vmm_env).

2. The methodology used to generate and consume transactions, including the automation
with the use of VMM macros.

3. The methodology and support used to adapt transactions to modifications through
callbacks.

4. The level of support using the various base-class methods.
5. The methodology used to report logging and status information.

Figure 2.0b VMM Basic Base Classes

3.0 Transaction-Based Verification of a FIFO

This section presents a testbench of a FIFO using the VMM methodology. Fundamentally,
VMM recommends a layered approach to building verification environments. While layered
testbench concepts have been around for several years now, there has not been any common
definition. The different interpretations of layered testbench caused the design of different
verification environments even within the same organization. Experience has shown that such
heterogeneous verification environments lead to too much redundancy. For example, a
verification IP developed by one group doesn’t fit easily well into another slightly different
project/environment. A significant amount of effort can be easily saved when various teams
follow a unified methodology in the architecture of testbenches. For this to become reality, a

Message
Service

vmm_log

Simulation
Control

vmm_env

Data and
Transactions

vmm_data

Interfacing
Transactors

vmm_channel

Extensible
Verification
Component

xvc_xactor

VMM

Transactors

vmm_xactor

7
SNUG San Jose 2006 VMMing a SystemVerilog Testbench by Example

reference verification architecture that is flexible to cater various domains needs to be developed.
VMM is the industry’s first non-proprietary, open, standard language-based verification
methodology.

3.1 The DUT

The design under test (DUT) is a synchronous first-in first-out (FIFO) model with the following
port connections:
 module fifo
 (input clk, input reset_n, fifo_if.fslave_if_mp f_if);

Those port connections include the clock, the reset, and the FIFO interface using with the slave
modport. Figure 3.1a. demonstrates the FIFO interface with the modports used throughout the
design and the testbench.

Figure 3.1a FIFO Interface (file fifo_if.sv)

The paper addresses the PUSH and POP interface with one transactor (file fifo_cmd_xactor.sv)
to drive all the signals, and a monitor transactor (file fifo_mon_xactor.sv) to monitor the signals.
The complete model is shown in the appendix and is available for download.[4]

A DUT typically carries with it a set of requirement documents and a set of interfaces.
SystemVerilog provides a useful construct, the interface to abstract the communication across
several modules. Some designers use the SystemVerilog interface definition in the RTL design.
Others restrict the design to the Verilog style with individual port signals, instead of grouping
the signals with SystemVerilog interfaces. If an interface is not defined, it is necessary for the
verification engineer to define such an interface model as this facilitates the connections to the
verification environment defined in classes through the use of virtual interfaces.

An interface typically has tasks and assertions associated with the operation of the signals of the
interface. Examples of tasks in a FIFO interface include a push_task, a pop_task. VMM (rule
4-9) recommends the definition of those tasks associated with the interface in classes and
subclasses (a.k.a. derived classes), separate from those defined in the interface. Interface

interface fifo_if(input wire clk,
input wire reset_n);

timeunit 1ns;
timeprecision 100ps;

// import fifo_pkg::*;
logic push;
logic pop;
wire full;
wire empty;
logic error;
word_t data_in;
word_t data_out;
parameter hold_time=3;
parameter setup_time = 5;

clocking driver_cb @ (posedge clk);
default input #setup_time

output #hold_time;
input empty, full, data_out, error;
output data_in, push, pop;

endclocking : driver_cb

modport fdrvr_if_mp (clocking driver_cb);

Identifies sampling
and delays

8
SNUG San Jose 2006 VMMing a SystemVerilog Testbench by Example

assertions relate to the properties or timing relationships of those signals. Assertions can be
defined in the interfaces or in a property module bound to the DUT instance. The specifications
are used to build the interfaces and property module, as shown in Figure 3.1b.

Figure 3.1b. Specifications Used for Definition of Interfaces and Verification Modules

3.2 The Testbench

3.2.1 Conceptual View

The basic idea of a transaction-based verification methodology, such as VMM, is to separate the
transaction from the transactor. While there are few varying definitions of these terms, here is a
simple definition we follow in this paper. A transaction is basically “what needs to be tested”
and a transactor models “how to test”. Examples of a transaction are:

1. Instruction. This represents the high-level tasks to be executed, such as a READ,
WRITE, NO-OP, LOAD, etc.

2. Data. This represents information such as address, data, number of cycles, etc.
3. Parameters. This can represent a mode, a size, etc.

In VMM, a transactor is a generic name, and there are several kinds of transactors such as
generator, driver, monitor, scoreboard etc. A direct equivalent of a typical VMM transactor is
what’s conventionally known as BFM (Bus Functional Model) at the lower level. On the driver
side, a BFM takes a transaction as input and sends it to the DUT according to the underlying
protocol.

It is best to use SystemVerilog classes to declare transactions and transactors. The rationale
behind this guideline is as follows: by definition a transaction has a limited lifetime - from the
time it gets generated to the time it is consumed by the DUT, checked for correctness etc. The
number of such transactions in a system is variable - this would logically mean that a dynamic
memory allocation of such transactions is a must have to make optimal use of simulation. By

Property
Module *

DUT Interface *

(and supporting
tasks)

* Recommended

DUT

Interfaces
clocks
resets

DUT

Interfaces
clocks
resets

DUT

Ports
clocks
resets

Interfaces

Interfaces and Ports Ports only

Specifications
- Interface
- Assertions
- Tasks

9
SNUG San Jose 2006 VMMing a SystemVerilog Testbench by Example

definition, constructs such as plain Verilog modules and SystemVerilog interfaces etc. are
“static” in nature - they exist throughout the simulation and hence are not suited for modeling
dynamic transactions. Another key reason to consider using SystemVerilog classes to model
transactions is the ability to easily derive and extend them to create variations of transactions
and to mimic real-life data streams such as Ethernet Packets. An Ethernet packet, as defined by
the standard, has several layers (such as L2, L3, L4 etc.), and each layer encapsulates another
one. With a conventional “Hardware Design Language” one is limited to use only a simple
modeling style that does not lend to good, maintainable and reusable code. The Software
domain has been handling such complexity in the past with great success with Object-Oriented
(OO) programming style. SystemVerilog brings in that OO style to Hardware Verification via
the class data type.

VMM defines a base class named vmm_data to model transactions. It is used as the basis for all
transaction descriptors and data models. A simple example of a FIFO transaction modeled using
vmm_data is shown in Figure 3.2.1a.

class fifo_xactn extends vmm_data;
 rand fifo_scen_t kind; // see package for type
 rand logic [BIT_DEPTH-1:0] data;
 rand int idle_cycles;
 time xactn_time;
endclass : fifo_xactn

Figure 3.2.1a. Transaction Class Example (file fifo_xactn.sv)

The vmm_data base class defines several virtual functions and tasks. A complete list is beyond
the scope of this paper. One such function is the vmm_data::copy() that should (VMM Rule
4-76) be extended to add relevant transaction fields. In our FIFO example, this function is
shown in Figure 3.2.1b.

function fifo_xactn fifo_xactn::copy(vmm_data cpy);
 fifo_xactn local_xactn;
 if (cpy == null) begin
 local_xactn = new;
 end
 else if (!$cast(local_xactn, cpy)) begin

`vmm_fatal(log, "Attempting to copy a non fifo_xactn instance");
 copy = null;
 return;
 end

 local_xactn.kind = this.kind;
 local_xactn.data = this.data;
 local_xactn.idle_cycles = this.idle_cycles;
 copy = local_xactn;
endfunction : copy

Figure 3.2.1b. Sample User-defined Copy Method (file fifo_xactn.sv)

10
SNUG San Jose 2006 VMMing a SystemVerilog Testbench by Example

Other useful vmm_data functions include the compare() for comparison of transactions useful
with scoreboards to check for data integrity, and psdisplay() for the return of an image of the
transaction. The macro `vmm_channel (discussed later on) defines a channel class derived from
the vmm_data to transport instances of a specified class (e.g., a transaction).

Transactors are the workhorses of a transaction-based verification (TBV) environment; they
perform the actual job of transferring the data (transaction) to other units to perform a task, such
as driving the DUT pins or driving the verification scoreboard.

This concept is represented in Figure 3.2.1c where in constrained-random testing, the
transactions defined in a transaction class are randomized with a generator and sent to a
transactor via a channel for the execution of those transactions. For example, a transaction such
as a PUSH / IDLE / POP is randomized with constraints, and then sent to a channel (constructed
with a queue and characterized in the diagrams as a mailbox) via the put method. The put
method blocks if there is no room in the channel to insert another transaction. When the
transactor is ready to process another transaction, it extracts from the channel the next
transaction via the get method. The transactor then proceeds on executing the begotten
transaction.

Figure 3.2.1c High-level View of the Testbench

Note that the use of a channel provides several advantages, including the buffering and
separation between the generation and the consumption of the transactions. A second advantage
is the simplicity in clock synchronization between the generation and consumption side of the
transactions. Specifically, they do not need to be synchronous to a common clock because the
insertion and extraction of transactions is separate. A third advantage is the capability to easily
modify the transactions through callbacks to provide changes such as error injection. A fourth
advantage is capability to have generation (and even consumption) of the transactions be
performed by different agents/transactors.

Testbench

DUTDUT

Clock
generators

DUT
Interfaces

Program

Transactions Transactors
channel

Monitor
transactors

channel scoreboard

11
SNUG San Jose 2006 VMMing a SystemVerilog Testbench by Example

3.2.2 Testbench Outline

Figure 3.2.2 represents a structural view of the testbench. The testbench includes the following
objects:

1. Variables declarations: These are variables local to the testbench
2. Interface instantiations: These are the DUT interfaces to provide the connection

between the stimulus drivers/monitors and the DUT.
3. Program instantiations: The program provides the control for testing the DUT. A

testbench may contain more than one program.
4. DUT instantiations: These are the devices under test.
5. Binding of property modules to DUT instances: Property module typically includes

assertions and coverage requirements.
6. Clock generators: These generators emulate the clocks in the system.

 Figure 3.2.2 Testbench Structure

3.2.3 The program

SystemVerilog program provides an ideal encapsulation for all testbench related items. It acts as
entry and exit points for the simulation. SystemVerilog LRM has well defined semantics for
program that requires it to execute under reactive time-step, thereby eliminating any design-to-
testbench race conditions (one of the most recurring problems with plain Verilog testbenches and
many teams have spent unproductive debug cycles in detecting and resolving them in the past).
The program is responsible for the generation and verification of the test vectors. Figure 3.2.3a
represents the program for the verification of the FIFO model. The program makes use of the
VMM library, a user-defined set of constants and type definitions, a transaction class, and an
environment class. A program can have the following constructs: initial, continuous
assignment, final construct, module or generate item declaration, concurrent assertion item,

bind RTL
to property

module

DUT
RTL

Clock
generator

Variables and
Interfaces*

Test
Program

CLASSES
* support
* transaction
* transactor
* libraries

Property
module

TESTBENCH

12
SNUG San Jose 2006 VMMing a SystemVerilog Testbench by Example

timeunits declaration. It cannot

contain always blocks, UDPs, modules, interfaces, or other

programs. VMM Rule 4-7 is a worthy rule related to the program block that states:
“synchronous interface signals shall be sampled and driven using a clocking block. This
approach will avoid race conditions between the design and the verification environment, and it
will allow the verification environment to work with RTL and gate-level models of the DUT
without any modifications or timing violations.” See files fifo_if.sv, fifo_cmd_xactor.sv for an
application of the clocking blocks, and section 3.3 for the resulting display of hold times
specified in the clocking blocks.

Per VMM guidelines, the initial block constructs an environment object and starts the run
method from the environment class. The vmm_env::run() execution sequence is described in the
VMM book and is shown in Figure 3.2.3b. That run method essentially builds and starts the
verification environment, including the fifo_xactn, the generator of transactions into the
transaction channel with the fifo_xactn_push_atomic_gen, the transactor to drive the FIFO
interface, and the monitor to extract the observed transactions on the FIFO interface.

program fifo_test_pgm (fifo_if fifo_if_0
);
 timeunit 1ns; timeprecision 100ps;
`include "vmm.sv"
`include "fifo_pkg.sv"
`include "fifo_xactn.sv"
`include "fifo_env.sv"
 vmm_log log;
 fifo_env fifo_env_0;
 fifo_xactn my_push_xaction;

initial
 begin
 // Build all components of an environment - testbench
 log = new("Pgm_Logger",0);
 fifo_env_0 = new(fifo_if_0);
 `vmm_note(log,"Started");
 fork : f1
 fifo_env_0.run();
 join_none
 #100000;
 end
endprogram : fifo_test_pgm

 Figure 3.2.3a. High-Level Structural View of the Program (file fifo_pgm.sv)

The formal arguments of the program include the fifo interface (and may include other interfaces
and signals).

Build of environment and
control of simulation.

Actual connection to
FIFO interface

13
SNUG San Jose 2006 VMMing a SystemVerilog Testbench by Example

Figure 3.2.3b vmm_env::run() Execution Sequence
(from Verification Manual Methodology Manual for SystemVerilog)

3.2.4 A generalized test flow mechanism

In general, every test that is being run in a simulation follows a test-flow such as initialize – start
-wait_for_end - finish. In many environments this is not defined a priori leading to various
difficulties such as ease of integration, wasted debug cycles (e.g., after hours of debug, problem
might be root caused to premature start of packet transmission - before configuring the DUT
registers). VMM defines a well thought out flow to avoid such problems, in addition to being
very flexible to suit different environments. It also has built-in checks to make sure the steps are
not by-passed accidentally.

The run() method consists of the calls to other methods, which are summarized below. Many of
the specific extensions for these methods are described in this paper.

14
SNUG San Jose 2006 VMMing a SystemVerilog Testbench by Example

gen_cfg()

This method creates a random configuration of the test environment and DUT. It may choose
the number of input and output ports in the design and their speed, or the number of drivers on a
bus and their type (master or slave). One can also randomly select the number of transactions,
percent errors, and other parameters. The goal is that over many random runs, one will test
every possible configuration, instead of the limited number chosen by directed test writers.

build()

This method builds the testbench configuration generated in the previous method. This includes
generators and checkers, drivers and monitors, and anything else not in the DUT. An example of
the user-defined build method is shown in section 3.2.6.

cfg_dut ()

In this method one downloads the configuration information into the DUT. This might be done
by loading registers using bus transactions, or backdoor loading them using $readmemh/b or a
hierarchical reference to configuration registers (e.g., top.chip.pci_blk.cfg_0 = 10), or C code.

start()

This method starts the test components. This is usually done by starting the transactor objects.
For example, the start() task in class fifo_env (which extends vmm_env) call the start_xactor(),
which in turn call the main() tasks in the transactors. This is a key step in the whole flow - this is
where all components of the testbench are starting their intended operations. For all transactors
that are built in the environment, their individual start_xactor() task should be called in this step.
.
 task start(); // in fifo_env.sv file
 super.start();
 this.push_gen_0.start_xactor();
 this.fifo_cmd_xactor_0.start_xactor();
 this.mon_0.start_xactor();
 endtask : start

wait_for_end()

This method waits for the end of the test, usually done by waiting for a certain number of
transactions or a maximum time limit. Depending on the design under test and the nature of test,
this might become complicated - for instance, one may need to monitor internal state machines
to see when they return to their idle states.

stop()

This method stops the data generators and waits for the transactions in the DUT to drain out.

cleanup()

This method checks recorded statistics and sweeps for lost data.

15
SNUG San Jose 2006 VMMing a SystemVerilog Testbench by Example

report()

This method prints the final report. Note that vmm_log will automatically print its report at the
end of simulation.

The following sections describe the transaction classes, the creation of channels, the generation
of transactions into the channels, the consumption of transactions from the channels, the build of
the environment, and the start of execution. Simulation results are then presented.

3.2.5 Transaction class

In a TBV methodology, a transaction defines the basic data model of the system, establishes a
common currency for the system. The individual properties/members of a transaction may need
to be randomized to support a CRT on top of TBV. The transaction class is defined as a derived
class of vmm_data to take advantage of methods available from this base class. Also consistent
use of vmm_data to derive transactions will ensure same look and feel and shall help in
maintenance of the code over a period of time. Figure 3.2.4 represents the transaction class for
the FIFO.
.

class fifo_xactn extends vmm_data;

 rand fifo_scen_t kind;
 rand logic [BIT_DEPTH-1:0] data;
 rand int idle_cycles;
 time xactn_time;

 constraint cst_data {
 data < 1024;
 }

constraint cst_idle {
 idle_cycles inside {[1:3]};
 }

constraint cst_xact_kind {
 kind dist {
 PUSH := 400,
 POP := 300,
 PUSH_POP :=200,

 IDLE := 300,
 RESET := 1
 };
 }

 static vmm_log log = new("fifo_push", "");

function new();
 super.new(this.log);

Base class

Make static to minimize
memory usage (VMM pg. 383)

16
SNUG San Jose 2006 VMMing a SystemVerilog Testbench by Example

 `vmm_note(this.log, "Message from constructor");

endfunction : new

virtual function string psdisplay(string prefix = "");

 $sformat(psdisplay,
 "%s Fifo push Xaction %s \n",
 prefix, this.kind.name());

endfunction : psdisplay

extern virtual function fifo_xactn_push
 copy(vmm_data cpy = null);

endclass:fifo_xactn_push

Figure 3.2.4. Transaction Base Class (file fifo_xactn.sv)

Some of the important methods inside vmm_data are copy(), psdisplay(), etc. Every vmm_data
derivative should implement the actual definitions for these functions. Function psdisplay()
defines a consistent way to display every transaction object in the system. It returns a string, and
hence can be easily used in any $display call etc. The copy() method provides a very important
functionality of implementing what constitutes a true copy of the transaction.

3.2.6 Transactor class

Transactors represent the workhorses of the system. All the BFMs, generators, scoreboards,
monitors etc. are built as transactors. VMM defines a base class named vmm_xactor for a
generic transactor. All transactors in a system should be derived from this vmm_xactor. A
vmm_xactor has several hooks for allowing basic functionalities as well as advanced features
such as flow control. A detailed look into how a transactor operates is provided later in the
paper.

3.2.7 Creation of Channels

A channel provides the structures (e.g., queues) to store the transactions, and provides the
support to process those transactions. One side of the channel is the generator putting
transactions into the channel. The functional transactor (e.g., the BFM) gets the transactions
out of the channel, and executes them. The VMM channel is constructed with a queue that has
both high-water and low-water marks to fine-tune the interactions between the producer and
consumer. Channels allow flow control, so the put() method will block if the channel is full.
The get() method removes the transaction from the end of the channel, while peek() provides a
handle to it without removal. Both the get() and the peek() block if the channel is empty. Note
that a channel acts like a mailbox, and is symbolically represented as a mailbox in the diagrams.

To facilitate the implementation of channels VMM automatically creates a derived class from
the user-defined transaction class using the `vmm_channel macro as shown in the example below
(see file fifo_xactn.sv):
`vmm_channel (fifo_xactn_push)

17
SNUG San Jose 2006 VMMing a SystemVerilog Testbench by Example

That macro creates the class fifo_xactn_push_channel that produces a strongly typed queue to
help prevent coding errors. Figure 3.2.5 represents a graphical view for the creation of the
channel class and the creation of the transaction generator (discussed in the next subsection).

Figure 3.2.5 Creation of Channels and Generators from Transactions
(See files fifo_xactn.sv , fifo_env.sv)

3.2.8 Generation of Transactions

In a CRT methodology, the default transactions are randomly generated. This generation can be
accomplished as follows:

Instantiate a “blueprint” of the object to be generated (e.g., a new transaction).
Construct it, randomize it.
Push it to the output channel so that they can be extracted by the down-stream
transactors. Note that the pushing can be blocked when the channel is to capacity.
Loop process.

To support this feature in an automatic manner, VMM provides a macro `vmm_atomic_gen and
`vmm_scenario_gen for the creation of generator classes for atomic (purely random with no
sequence) and sequence generation of transactions. In this model we used a simple automatic
generator with the pre-defined macro for simplicity:
`vmm_atomic_gen (fifo_xactn, "FIFO PUSH Xaction Generator")

This macro creates the class fifo_xactn_atomic_gen. When this class is instantiated, connected to
the channel, and started, then the transactions are automatically generated, randomized and put
into the channel for extraction by the consumer. The user does not have to create or call a
method to explicitly do this randomization / generation function.

The application of this generated class is demonstrated in the build method of fifo_env, as shown
in Figure 3.2.6a.

fifo_xactn

rand, Constraints

`vmm_channel
(fifo_xactn)

vmm_data

fifo_xactn_
channel

creation

creation

`vmm_atomic_gen (fifo_xactn,
"FIFO PUSH Xaction Generator")

fifo_xactn_
atomic_gen

class
class

class

18
SNUG San Jose 2006 VMMing a SystemVerilog Testbench by Example

// In file fifo_env.sv
// Channel instance
fifo_xactn_channel fifo_push_channel;
// Generator instance
fifo_xactn_atomic_gen push_gen_0;

function void build();
 this.fifo_push_channel = // instantiate channel
 new("push_chan","0");
 this.push_gen_0 = // instantiate generator
 new ("Push Xaction generator", 0);

 this.push_gen_0.out_chan = // Connect channel to generator
 this.fifo_push_channel;
...
endfunction : build

Figure 3.2.6a Generation of Transactions into Channels (file fifo_env.sv)

Figure 3.2.6b represents a graphical view of this generation of transactions into channels.

 Figure 3.2.6b Generation of Transactions into Channels

3.2.9 Consumption of transactions from the channels

The transactor class is responsible for extracting (or getting) the transaction from the channel,
and parsing the transaction into the vector sequences used by the DUT. The transactor needs to
communicate the assertion of vectors onto signals. To facilitate reuse, those signals are defined
into virtual interfaces. In this example, the FIFO driver interface is of type fifo_if. fdrvr_if_mp,
Figure 3.2.7a represents the consumption of transactions from the channel.

vmm_env

fifo_push_channel

push_gen_0;

function void build();
this.fifo_push_channel =

new("push_chan","0");

this.push_gen_0 =
new ("Push Xaction generator", 0);

this.push_gen_0.out_chan =
this.fifo_push_channel;

fifo_xactn_
channel

fifo_xactn_
atomic_gen

class

class

19
SNUG San Jose 2006 VMMing a SystemVerilog Testbench by Example

The build() method in the user-defined environment (file fifo_env.sv) creates the simulation
environment. Figure 3.2.7b demonstrates the generation and consumption of transactions
through the use of channels for transaction transfers, the use of the atomic generator for the
production of the transactions into the channels, and through instantiation of the transactor for
the consumption of the transactions.

The main task in the transactor gets the transaction from the channel, analyzes its contents, and
drives signals onto the virtual interface. This is demonstrated in Figure 3.2.7c. The main task
of the fifo_xactor derived class (extended from vmm_xactor) is automatically started by the base
class vmm_xactor.

 Figure 3.2.7a. Consumption of Transactions from the channel (see file fifo_cmd_xactor.sv)

class fifo_cmd_xactor extends vmm_xactor;
virtual fifo_if.fdrvr_if_mp f_if;
fifo_xactn_channel in_chan;

function new(string instance,
int unsigned stream_id = -1,
virtual fifo_if.fdrvr_if_mp new_vir_if,
fifo_xactn_channel new_in_chan);

super.new("Fifo COMMAND Layer Push Xactor", instance, stream_id);
this.f_if = new_vir_if;
this.in_chan = new_in_chan;

endfunction : new

task main();
…
forever
begin : main_loop

fifo_xactn_push push_xaction;
this.in_chan.get(push_xaction);
case (push_xaction.kind)
PUSH : this.push_task(push_xaction.data);

fifo_xactn_
channel

class

Started by fifo_env::start()

20
SNUG San Jose 2006 VMMing a SystemVerilog Testbench by Example

 Figure 3.2.7b. Generation and Consumption of Transactions

class fifo_cmd_xactor extends vmm_xactor;
. .

 task main();
 fork
 super.main();
 join_none
 forever
 begin : main_loop
 fifo_xactn push_xaction;
 this.in_chan.get(push_xaction);
 case (push_xaction.kind)
 PUSH : this.push_task(push_xaction.data);
 POP : this.pop_task();
 PUSH_POP : this.push_pop_task(push_xaction.data);
 IDLE : this.idle_task(push_xaction.idle_cycles);
 RESET : this.reset_task(5);
 endcase

 end : main_loop
 endtask : main

Extracting the
transaction from
the channel

VMM rule 4-93 – All threads shall be started in the
extension of the vmm_xactor::main() task.
main() is started by fifo_env::start_xactor()

vmm_env

fifo_push_channel

push_gen_0;

function void build();
this.fifo_push_channel =

new("push_chan","0");

this.push_gen_0 =
new ("Push Xaction generator", 0);

this.fifo_cmd_xactor_0 =
new("PUSH_XACTOR",

0,
vir_if,
fifo_push_channel
);

this.push_gen_0.out_chan =
this.fifo_push_channel;

fifo_xactn_
channel

fifo_xactn_
atomic_gen

fifo_cmd_xactor_0;

fifo_cmd_xactor

class

class

class

21
SNUG San Jose 2006 VMMing a SystemVerilog Testbench by Example

 task push_task (logic [BIT_DEPTH-1:0] data);
 begin
 $display ("%0t %m Push data %0h ", $time, data);

 f_if.driver_cb.data_in <= data; // using clocking block

 f_if.driver_cb.push <= 1'b1;

 f_if.driver_cb.pop <= 1'b0;

 @ (f_if.driver_cb);
 f_if.driver_cb.push <= 1'b0;
 end
 endtask : push_task
 ..

Figure 3.2.7c. Execution of Transaction by Transactor (file fifo_cmd_xactor.sv)

3.2.10 Monitoring of Transactions

“A monitor is passive transactor that autonomously reports observed

data or transactions. It
may include a checker or equivalent checking functionality for the observed protocol, but not the
data or transactions transported by the protocol”. Thus, the monitor examines the interface,
creates a transaction based on what is observed on the interface, and puts that observed
transaction onto a monitor channel. That process is demonstrated graphically in Figure 3.2.8a.

Figure 3.2.8a Putting Transactions into Monitor Channel (file fifo_mon_xactor.sv)

mon_push_channel

fifo_xactn_
channel

class

fifo_xactn cur_push_xactn;
..
task fifo_mon_xactor::mon_push();

while (1) begin : mon_push_loop
@(this.f_if.mon_cb);
if (this.f_if.mon_cb.push === 1'b1) begin

this.cur_push_xactn = new();
this.cur_push_xactn.data = this.f_if.mon_cb.data_in;
this.cur_push_xactn.xactn_time = $time;
…
this.push_out_chan.put(this.cur_push_xactn);

end // if
end : mon_push_loop

endtask : mon_push

f_if

fifo_mon_xactor

class

22
SNUG San Jose 2006 VMMing a SystemVerilog Testbench by Example

3.2.11 Class Relationships in UML

To express the class relationships of the testbench design model, a UML diagram was created
using StartUML™ [5]. These are shown in Figure 3.2.11a and Figure 3.2.11b. The diagram
demonstrates the class relationships between the classes, and the class objects, operators. Design
patterns are addressed in the book Design Patterns [6] and is a recommended reading.

Figure 3.2.11a Class Relationships of the Testbench Design Model

Figure 3.2.11b Class Relationships of the Testbench Design Model

vmm_data

fifo_xactn

+ rand fifo_scen_t kind;
+ rand logic [BIT_DEPTH-1:0] data;
+ rand int idle_cycles;

+new()
+ psdisplay(string prefix = "")()

vmm_xactor

fifo_cmd_xactor

+ virtual f ifo_if f_if;
+ vmm_log log;
+ fifo_xactn_channel in_chan;

+ new(virtual f ifo_if new_vir_if, f ifo_xactn_channel new_in_chan);()
+main()

` vmm_atomic_gen(fifo_xactn, ".. Xaction Genr")
<<macro>>

fifo_xactn_atomic_gen

+ fifo_xactn
+ fifo_xactn_channel

` vmm_channel (f ifo_xactn)
<<macro>> fifo_xactn_channel

f ifo

fifo_if

fifo_env

+ fifo_cmd_xactor f ifo_cmd_xactor_0;
+ fifo_xactn_channel f ifo_push_channel;
+ fifo_xactn_channel mon_push_chan;
+ virtual f ifo_if vir_if;
+ push_cfg push_cfg_0;
+ f ifo_xactn_atomic_gen push_gen_0;
+ f ifo_mon_xactor mon_0;
+ fifo_log_fmt log_fmt_cntl;
+ vmm_log log;

+ new(virtual f ifo_if new_vif)
+build()
+ reset_dut()
+ start()
+ wait_for_end()

vmm_env

23
SNUG San Jose 2006 VMMing a SystemVerilog Testbench by Example

3.2.12 Message Service

The message service uses the vmm_log class. This class and its supporting functions and macros
help to ensure a consistent look and feel to the messages issued from different sources. This
section demonstrates an example in the use of the vmm_log class and macros.

The class fifo_xactn_push demonstrates the use of vmm_log and the definition of the Synopsys
VCS function psdisplay. Figure 3.2.12a provides a snippet of the code.

 static vmm_log log = new("fifo_push", "");
 function new();
 super.new(this.log);
 `vmm_note(this.log, "Message from constructor");
 endfunction : new

 virtual function string psdisplay(string prefix = "");
 $sformat(psdisplay, "%s Fifo push Xaction %s \n",
 prefix, this.kind.name());
 endfunction : psdisplay

Figure 3.2.12a. Application of vmm_log (file fifo_xaction.sv)

The class fifo_cmd_xactor demonstrates the application of `vmm_note macro and the $psprintf.
Figure 3.2.12b provides a snippet of that code.

vmm_log log;
 function new(string instance,
 int unsigned stream_id = -1,
 virtual fifo_if.fdrvr_if_mp new_vir_if,
 fifo_xactn_push new_in_chan);
 super.new("Fifo COMMAND Layer Push Xactor",
 instance, stream_id);
 this.f_if = new_vir_if;
 this.in_chan = new_in_chan;
 this.log = new("Fifo COMMAND Layer Xactor","Logger0");
 `vmm_note(this.log, "Push CMD_Xactor new");
 endfunction : new

 task main();
 ..
 begin : main_loop
 fifo_xactn push_xaction;
 `vmm_note(this.log,
 "About to Get a new fifo xaction from in_channel ");
 this.in_chan.get(push_xaction);
 `vmm_note(this.log,
 $psprintf("Got a new fifo xaction from in_channel %s ",
 push_xaction.psdisplay()));

Figure 3.2.12b. Application of `vmm_note and the $psprintf (file fifo_cmd_xactor.sv)

24
SNUG San Jose 2006 VMMing a SystemVerilog Testbench by Example

During simulation, Figure 3.2.12c demonstrates a sample text of what was displayed for these
functions and macros.

0.00 ns Pgm_Logger [Normal:NOTE] | Started
0.00 ns Fifo COMMAND Layer Xactor [Normal:NOTE] | Push CMD_Xactor new
0.00 ns fifo_push [Normal:NOTE] | Message from consutructor
0.00 ns FIFO Env Logger [Normal:NOTE] | Sim shall run for no_of_xactions 238
..

1950.00 ns fifo_push [Normal:NOTE] | Message from constructor

1950.00 ns Fifo COMMAND Layer Xactor [Normal:NOTE] | About to Get a new fifo
xaction from in_channel

1950.00 ns Fifo COMMAND Layer Xactor [Normal:NOTE] | Got a new fifo xaction
from in_channel Fifo push Xaction PUSH_POP

1950.00 ns fifo_tb.utest_pgm.\fifo_cmd_xactor::push_pop_task Push data e

 Figure 3.2.12c Sample Display of Simulation Messages

3.3 Simulation Results

All simulations were performed with Synopsys VCS Version X-2005.SP1. Figure 3.3a shows
the assertion failure summary for the property module bound to the DUT. Figure 3.3b shows a
Push Error (Push on FULL), while Figure 3.3c demonstrates a Pop Error (POP on EMPTY

Figure 3.3a Assertion Failure Summary

25
SNUG San Jose 2006 VMMing a SystemVerilog Testbench by Example

Figure 3.3b Simulation with Push Error (Push on FULL)

26
SNUG San Jose 2006 VMMing a SystemVerilog Testbench by Example

Figure 3.3c Simulation with Pop Error (POP on EMPTY)

27
SNUG San Jose 2006 VMMing a SystemVerilog Testbench by Example

3.4 File Structure and Compilation

Table 3.4. demonstrates the file Structure and the purpose of each file. Figure 3.4a is a
graphical representation of the relationship between the files.

The compilation and simulation of the model with Synopsys VCS simulator can make use of the
Makefile in the vcs subdirectory, as shown in Figure 3.4b. The file list is shown in Figure 3.4c.

all:

vcs -debug_all -sverilog -f flist +incdir+../ -ntb_opts rvm
run:

./simv -gui &
clean:
./rm -fr csrc* simv* scsim* *vpd ag* session* work/* WORK/*
 *.so *.log test* cm* ucli* worklib/*

Figure 3.4b. Makefile for Compilation with Synopsys VCS Simulator (file vcs/Makefile)

../fifo_pkg.sv

../fifo_props.sv

../fifo_if.sv

../fifo_rtl.sv

../fifo_pgm.sv

../top_tb.sv

Figure 3.4c. File list used for Compilation (file vsc/flist)

Note that the compilation list does not include all the files used by the testbench. This is because
the program file (fifo_pgm.sv) had include statements:

`include the "vmm.sv"
`include "fifo_pkg.sv"
`include "fifo_xactn.sv"
`include "fifo_env.sv"

In addition, the fifo_env.sv file has include statements:
`include "fifo_log_fmt.sv"
`include "fifo_cmd_xactor.sv"
`include "fifo_gen_xactor.sv"
`include "fifo_mon_xactor.sv"

28
SNUG San Jose 2006 VMMing a SystemVerilog Testbench by Example

Table 3.4. File Structure and Functions

File Function Used by
fifo_pkg.sv Defines types and parameters. . ALL
fifo_if.sv Defines the FIFO interface. RTL, property models,

and by program,
testbench, transaction
and transactors

fifo_xactn.sv Defines the transaction class with the
constraints
Also used for the channel generation with:
 `vmm_channel (fifo_xactn)

`vmm_channel macro
for generation of
channel,
`vmm_atomic_gen
macro for generation
of atomic generator,
monitor transactor for
creation of transaction
from observed values
on bus interface.

fifo_gen_xactor.sv Uses the macro `vmm_atomic_gen for
generation of atomic generator, defines the
constraints for the number of transactions.

 Environment for
creation of the build
model,

fifo_cmd_xactor.sv

Provides the transactor definition to drive the
FIFO model.

FIFO environment

fifo_log_fmt.sv Defines formatting information for display. FIFO environment
fifo_mon_xactor.sv

Creates a copy of the observed transaction onto
a transaction channel.

Scoreboard, top level

fifo_env.sv Creates the build and start for simulation program
fifo_pgm.sv Creates the modeling for simulation and

initiates the run in the environment
Top level

fifo_props.sv Defines the properties for assertions Top level for bind
fifo_rtl.sv Represents the FIFO RTL DUT. Top level
top_tb.sv Represents the top level and instantiates the

RTL, the bind, the monitor, etc.
none

29
SNUG San Jose 2006 VMMing a SystemVerilog Testbench by Example

 Figure 3.4. File Structure and Relationships

4.0 Conclusions and Recommendations

Our experience with VMM and assertions was very positive because VMM represents a
methodology that addresses the important phases of the verification process in a structured
manner, along with the potential for easy expansion and reuse. The assertions along with the
random transactions did detect an error in the RTL model for the FULL flag. The VMM library
and macros do help in the building of the model. However, the application of VMM requires a
good understanding of the use of the library elements and macros. This knowledge can be
acquired through training, examples, and the use of the VMM for SystemVerilog book. We
hope that this paper provided a better understanding of the generation and consumption of
transactions written a la VMM.

5.0 Acknowledgements

We thank Tim L Wilson from Intel for reviewing this paper and for providing valuable
comments.

fifo_pkg.sv

fifo_if.sv

fifo_xactn.sv
fifo_xactn_

channel

`vmm_
channel

fifo_gen_
xactor.sv fifo_xactn_

atomic_gen

`vmm_atomic_
gen

(fifo_xactn,..)

fifo_cmd_xactor.sv

fifo_mon_xactor.sv

fifo_env.sv

fifo_pgm.sv

fifo_props.sv

fifo_rtl.sv

top_tb.sv

fifo_log_fmt.sv

all

Generated classes

In fifo_env.sv

In fifo_pgm.sv

vmm.sv

30
SNUG San Jose 2006 VMMing a SystemVerilog Testbench by Example

6.0 References

[1]Verification Methodology Manual for SystemVerilog, Bergeron, J., Cerny, E., Hunter, A.,
Nightingale, A. 2005, ISBN: 0-387-25538-9
[2] http://www.synopsys.com/news/announce/press2005/snps_sourcode_licsvpr.html
Reference Verification Methodology Tutorial, Synopsys documentation 2005
[3]SystemVerilog Assertions Handbook, Ben Cohen, Srinivasan Venkataramanan, Ajeetha
Kumari , 2005 ISBN 0-9705394-7-9
[4] http://www.abv-sva.org/vmm/snug06_cohen_sri_aji.tar

[5] Diagrams created with StarUML™ - The Open Source UML/MDA Platform available at:
 http://www.staruml.com/

StarUML™ is a software modeling platform that supports UML (Unified Modeling
Language). It is based on UML version 1.4 and provides eleven different types of
diagram, and it accepts UML 2.0 notation. It actively supports the MDA (Model Driven
Architecture) approach by supporting the UML profile concept.

[6] Design Patterns: Elements of Reusable Object-Oriented Software
(Addison-Wesley Professional Computing Series), Erich Gamma, Richard Helm, Ralph Johnson,
John Vlissides ISBN 0-201-63361-2

http://www.synopsys.com/news/announce/press2005/snps_sourcode_licsvpr.html
http://www.abv-sva.org/vmm/snug06_cohen_sri_aji.tar
http://www.staruml.com/

http://www.daneprairie.com

